No version for distro humble showing github. Known supported distros are highlighted in the buttons above.
Package symbol

vision_darknet_detect package from autoware_learn repo

amathutils_lib autoware_build_flags autoware_health_checker emergency_handler gnss lanelet2_extension libvectormap libwaypoint_follower map_file object_map op_planner op_ros_helpers op_simu op_utility ros_observer tvm_utility vector_map vector_map_server vehicle_sim_model autoware_connector ekf_localizer gnss_localizer image_processor imm_ukf_pda_track lidar_apollo_cnn_seg_detect lidar_euclidean_cluster_detect lidar_fake_perception lidar_kf_contour_track lidar_localizer lidar_naive_l_shape_detect lidar_point_pillars lidar_shape_estimation naive_motion_predict ndt_cpu ndt_gpu ndt_tku obj_db pcl_omp_registration pixel_cloud_fusion points_downsampler points_preprocessor pos_db range_vision_fusion road_occupancy_processor roi_object_filter trafficlight_recognizer twist_generator vel_pose_diff_checker vision_beyond_track vision_darknet_detect vision_lane_detect vision_segment_enet_detect vision_ssd_detect astar_search costmap_generator decision_maker dp_planner ff_waypoint_follower freespace_planner lane_planner lattice_planner ll2_global_planner mpc_follower op_global_planner op_local_planner op_simulation_package op_utilities pure_pursuit state_machine_lib twist_filter twist_gate way_planner waypoint_maker waypoint_planner autoware_quickstart_examples autoware_can_msgs autoware_config_msgs autoware_external_msgs autoware_lanelet2_msgs autoware_map_msgs autoware_msgs autoware_system_msgs tablet_socket_msgs vector_map_msgs carla_autoware_bridge gazebo_camera_description gazebo_imu_description lgsvl_simulator_bridge vehicle_gazebo_simulation_interface vehicle_gazebo_simulation_launcher wf_simulator autoware_bag_tools autoware_camera_lidar_calibrator autoware_launcher autoware_launcher_rviz calibration_publisher data_preprocessor graph_tools kitti_box_publisher kitti_launch kitti_player lanelet_aisan_converter log_tools map_tf_generator map_tools marker_downsampler mqtt_socket multi_lidar_calibrator oculus_socket pc2_downsampler rosbag_controller runtime_manager sound_player system_monitor tablet_socket twist2odom udon_socket vehicle_engage_panel vehicle_socket decision_maker_panel detected_objects_visualizer fastvirtualscan gazebo_world_description glviewer integrated_viewer points2image rosinterface autoware_rviz_plugins vehicle_description vehicle_model adi_driver as autoware_driveworks_gmsl_interface autoware_driveworks_interface vlg22c_cam custom_msgs garmin hokuyo javad_navsat_driver kvaser sick_lms5xx memsic_imu microstrain_driver nmea_navsat autoware_pointgrey_drivers sick_ldmrs_description sick_ldmrs_driver sick_ldmrs_laser sick_ldmrs_msgs sick_ldmrs_tools vectacam xsens_driver ymc ds4 ds4_driver ds4_msgs lanelet2 lanelet2_core lanelet2_examples lanelet2_io lanelet2_maps lanelet2_matching lanelet2_projection lanelet2_python lanelet2_routing lanelet2_traffic_rules lanelet2_validation mrt_cmake_modules

ROS Distro
github

Package Summary

Tags No category tags.
Version 1.12.0
License Apache 2
Build type CATKIN
Use RECOMMENDED

Repository Summary

Description autoware.ai perf
Checkout URI https://github.com/is-whale/autoware_learn.git
VCS Type git
VCS Version 1.14
Last Updated 2025-03-14
Dev Status UNKNOWN
Released UNRELEASED
Tags No category tags.
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

darknet image detector

Additional Links

No additional links.

Maintainers

  • Abraham Monrroy

Authors

No additional authors.

Vision Darknet Detect

Autoware package based on Darknet that supports Yolov3 and Yolov2 image detector.

Requirements

  • NVIDIA GPU with CUDA installed
  • Pretrained YOLOv3 or YOLOv2 model on COCO dataset, Models found on the YOLO website.
  • The weights file must be placed in vision_darknet_detect/darknet/data/.

How to launch

  • From a sourced terminal:

    • roslaunch vision_darknet_detect vision_yolo3_detect.launch
    • roslaunch vision_darknet_detect vision_yolo2_detect.launch
  • From Runtime Manager:

Computing Tab -> Detection/ vision_detector -> vision_darknet_detect You can change the config and weights file, as well as other parameters, by clicking [app]

Parameters

Launch file available parameters:

Parameter Type Description
score_threshold Double Detections with a confidence value larger than this value will be displayed. Default 0.5.
nms_threshold Double Non-Maximum suppresion area threshold ratio to merge proposals. Default 0.45.
network_definition_file String Network architecture definition configuration file. Default yolov3.cfg.
pretrained_model_file String Path to pretrained model. Default yolov3.weights.
camera_id String Camera workspace. Default /.
image_src String Image source topic. Default /image_raw.
names_file String Path to pretrained model. Default coco.names.

Subscribed topics

Topic Type Objective
/image_raw sensor_msgs/Image Source image stream to perform detection.
/config/Yolo3 autoware_config_msgs/ConfigSSD Configuration adjustment for threshold.

Published topics

Topic Type Objective
/detection/vision_objects autoware_msgs::DetectedObjectArray Contains the coordinates of the bounding box in image coordinates for detected objects.

Video

Yolo v3 Autoware

CHANGELOG

Changelog for package vision_yolo3_detect

1.11.0 (2019-03-21)

  • Removing CUDA dependencies for Darknet Yolov3 (#1784)

    * Removing CUDA dependencies for Darknet yolov3 If the host machine does not have CUDA, this will build the vision_darknet_detect package based on a pre-built darknet directory (which doesn't require CUDA as there are no CUDA dependencies for yolov3).

    * Update ros/src/computing/perception/detection/vision_detector/packages/vision_darknet_detect/CMakeLists.txt Co-Authored-By: K1504296 <<greytrt@gmail.com>>

  • Fix license notice in corresponding package.xml

  • Initial release of object filter

  • Contributors: Abraham Monrroy, Theodore, amc-nu

1.10.0 (2019-01-17)

  • Fixes for catkin_make
  • [fix] SSD detector, cmake colcon (#1837)
    • Fixes for new colcon script on ssd cuda based node

    • Fixed to RTM and darknet launch files

    • catkin_fix

      • catkin & colcon build successfully
    • reverted back run to devel space (for the time being)
  • Switch to Apache 2 license (develop branch) (#1741)
    • Switch to Apache 2

    * Replace BSD-3 license header with Apache 2 and reassign copyright to the Autoware Foundation.

    • Update license on Python files
    • Update copyright years
    • Add #ifndef/define _POINTS_IMAGE_H_
    • Updated license comment
  • Use colcon as the build tool (#1704)
    • Switch to colcon as the build tool instead of catkin
    • Added cmake-target
    • Added note about the second colcon call
    • Added warning about catkin* scripts being deprecated
    • Fix COLCON_OPTS
    • Added install targets
    • Update Docker image tags
    • Message packages fixes
    • Fix missing dependency
  • Feature/perception visualization cleanup (#1648)
      • Initial commit for visualization package
    • Removal of all visualization messages from perception nodes

    • Visualization dependency removal

    • Launch file modification

      • Fixes to visualization
    • Error on Clustering CPU

    • Reduce verbosity on markers

    • intial commit

      • Changed to 2 spaces indentation
    • Added README

    • Fixed README messages type

    • 2 space indenting

    • ros clang format

    • Publish acceleration and velocity from ukf tracker

    • Remove hardcoded path

    • Updated README

    • updated prototype

    • Prototype update for header and usage

    • Removed unknown label from being reported

    • Updated publishing orientation to match develop

      • Published all the trackers

File truncated at 100 lines see the full file

Dependant Packages

No known dependants.

Launch files

  • launch/vision_yolo2_detect.launch
      • gpu_device_id [default: 0]
      • score_threshold [default: 0.30]
      • nms_threshold [default: 0.45]
      • network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov2.cfg]
      • pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov2.weights]
      • names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
      • camera_id [default: /]
      • image_src [default: /image_raw]
  • launch/vision_yolo3_detect.launch
      • gpu_device_id [default: 0]
      • score_threshold [default: 0.30]
      • nms_threshold [default: 0.30]
      • network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov3.cfg]
      • pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov3.weights]
      • names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
      • camera_id [default: /]
      • image_src [default: /image_raw]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged vision_darknet_detect at Robotics Stack Exchange

No version for distro jazzy showing github. Known supported distros are highlighted in the buttons above.
Package symbol

vision_darknet_detect package from autoware_learn repo

amathutils_lib autoware_build_flags autoware_health_checker emergency_handler gnss lanelet2_extension libvectormap libwaypoint_follower map_file object_map op_planner op_ros_helpers op_simu op_utility ros_observer tvm_utility vector_map vector_map_server vehicle_sim_model autoware_connector ekf_localizer gnss_localizer image_processor imm_ukf_pda_track lidar_apollo_cnn_seg_detect lidar_euclidean_cluster_detect lidar_fake_perception lidar_kf_contour_track lidar_localizer lidar_naive_l_shape_detect lidar_point_pillars lidar_shape_estimation naive_motion_predict ndt_cpu ndt_gpu ndt_tku obj_db pcl_omp_registration pixel_cloud_fusion points_downsampler points_preprocessor pos_db range_vision_fusion road_occupancy_processor roi_object_filter trafficlight_recognizer twist_generator vel_pose_diff_checker vision_beyond_track vision_darknet_detect vision_lane_detect vision_segment_enet_detect vision_ssd_detect astar_search costmap_generator decision_maker dp_planner ff_waypoint_follower freespace_planner lane_planner lattice_planner ll2_global_planner mpc_follower op_global_planner op_local_planner op_simulation_package op_utilities pure_pursuit state_machine_lib twist_filter twist_gate way_planner waypoint_maker waypoint_planner autoware_quickstart_examples autoware_can_msgs autoware_config_msgs autoware_external_msgs autoware_lanelet2_msgs autoware_map_msgs autoware_msgs autoware_system_msgs tablet_socket_msgs vector_map_msgs carla_autoware_bridge gazebo_camera_description gazebo_imu_description lgsvl_simulator_bridge vehicle_gazebo_simulation_interface vehicle_gazebo_simulation_launcher wf_simulator autoware_bag_tools autoware_camera_lidar_calibrator autoware_launcher autoware_launcher_rviz calibration_publisher data_preprocessor graph_tools kitti_box_publisher kitti_launch kitti_player lanelet_aisan_converter log_tools map_tf_generator map_tools marker_downsampler mqtt_socket multi_lidar_calibrator oculus_socket pc2_downsampler rosbag_controller runtime_manager sound_player system_monitor tablet_socket twist2odom udon_socket vehicle_engage_panel vehicle_socket decision_maker_panel detected_objects_visualizer fastvirtualscan gazebo_world_description glviewer integrated_viewer points2image rosinterface autoware_rviz_plugins vehicle_description vehicle_model adi_driver as autoware_driveworks_gmsl_interface autoware_driveworks_interface vlg22c_cam custom_msgs garmin hokuyo javad_navsat_driver kvaser sick_lms5xx memsic_imu microstrain_driver nmea_navsat autoware_pointgrey_drivers sick_ldmrs_description sick_ldmrs_driver sick_ldmrs_laser sick_ldmrs_msgs sick_ldmrs_tools vectacam xsens_driver ymc ds4 ds4_driver ds4_msgs lanelet2 lanelet2_core lanelet2_examples lanelet2_io lanelet2_maps lanelet2_matching lanelet2_projection lanelet2_python lanelet2_routing lanelet2_traffic_rules lanelet2_validation mrt_cmake_modules

ROS Distro
github

Package Summary

Tags No category tags.
Version 1.12.0
License Apache 2
Build type CATKIN
Use RECOMMENDED

Repository Summary

Description autoware.ai perf
Checkout URI https://github.com/is-whale/autoware_learn.git
VCS Type git
VCS Version 1.14
Last Updated 2025-03-14
Dev Status UNKNOWN
Released UNRELEASED
Tags No category tags.
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

darknet image detector

Additional Links

No additional links.

Maintainers

  • Abraham Monrroy

Authors

No additional authors.

Vision Darknet Detect

Autoware package based on Darknet that supports Yolov3 and Yolov2 image detector.

Requirements

  • NVIDIA GPU with CUDA installed
  • Pretrained YOLOv3 or YOLOv2 model on COCO dataset, Models found on the YOLO website.
  • The weights file must be placed in vision_darknet_detect/darknet/data/.

How to launch

  • From a sourced terminal:

    • roslaunch vision_darknet_detect vision_yolo3_detect.launch
    • roslaunch vision_darknet_detect vision_yolo2_detect.launch
  • From Runtime Manager:

Computing Tab -> Detection/ vision_detector -> vision_darknet_detect You can change the config and weights file, as well as other parameters, by clicking [app]

Parameters

Launch file available parameters:

Parameter Type Description
score_threshold Double Detections with a confidence value larger than this value will be displayed. Default 0.5.
nms_threshold Double Non-Maximum suppresion area threshold ratio to merge proposals. Default 0.45.
network_definition_file String Network architecture definition configuration file. Default yolov3.cfg.
pretrained_model_file String Path to pretrained model. Default yolov3.weights.
camera_id String Camera workspace. Default /.
image_src String Image source topic. Default /image_raw.
names_file String Path to pretrained model. Default coco.names.

Subscribed topics

Topic Type Objective
/image_raw sensor_msgs/Image Source image stream to perform detection.
/config/Yolo3 autoware_config_msgs/ConfigSSD Configuration adjustment for threshold.

Published topics

Topic Type Objective
/detection/vision_objects autoware_msgs::DetectedObjectArray Contains the coordinates of the bounding box in image coordinates for detected objects.

Video

Yolo v3 Autoware

CHANGELOG

Changelog for package vision_yolo3_detect

1.11.0 (2019-03-21)

  • Removing CUDA dependencies for Darknet Yolov3 (#1784)

    * Removing CUDA dependencies for Darknet yolov3 If the host machine does not have CUDA, this will build the vision_darknet_detect package based on a pre-built darknet directory (which doesn't require CUDA as there are no CUDA dependencies for yolov3).

    * Update ros/src/computing/perception/detection/vision_detector/packages/vision_darknet_detect/CMakeLists.txt Co-Authored-By: K1504296 <<greytrt@gmail.com>>

  • Fix license notice in corresponding package.xml

  • Initial release of object filter

  • Contributors: Abraham Monrroy, Theodore, amc-nu

1.10.0 (2019-01-17)

  • Fixes for catkin_make
  • [fix] SSD detector, cmake colcon (#1837)
    • Fixes for new colcon script on ssd cuda based node

    • Fixed to RTM and darknet launch files

    • catkin_fix

      • catkin & colcon build successfully
    • reverted back run to devel space (for the time being)
  • Switch to Apache 2 license (develop branch) (#1741)
    • Switch to Apache 2

    * Replace BSD-3 license header with Apache 2 and reassign copyright to the Autoware Foundation.

    • Update license on Python files
    • Update copyright years
    • Add #ifndef/define _POINTS_IMAGE_H_
    • Updated license comment
  • Use colcon as the build tool (#1704)
    • Switch to colcon as the build tool instead of catkin
    • Added cmake-target
    • Added note about the second colcon call
    • Added warning about catkin* scripts being deprecated
    • Fix COLCON_OPTS
    • Added install targets
    • Update Docker image tags
    • Message packages fixes
    • Fix missing dependency
  • Feature/perception visualization cleanup (#1648)
      • Initial commit for visualization package
    • Removal of all visualization messages from perception nodes

    • Visualization dependency removal

    • Launch file modification

      • Fixes to visualization
    • Error on Clustering CPU

    • Reduce verbosity on markers

    • intial commit

      • Changed to 2 spaces indentation
    • Added README

    • Fixed README messages type

    • 2 space indenting

    • ros clang format

    • Publish acceleration and velocity from ukf tracker

    • Remove hardcoded path

    • Updated README

    • updated prototype

    • Prototype update for header and usage

    • Removed unknown label from being reported

    • Updated publishing orientation to match develop

      • Published all the trackers

File truncated at 100 lines see the full file

Dependant Packages

No known dependants.

Launch files

  • launch/vision_yolo2_detect.launch
      • gpu_device_id [default: 0]
      • score_threshold [default: 0.30]
      • nms_threshold [default: 0.45]
      • network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov2.cfg]
      • pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov2.weights]
      • names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
      • camera_id [default: /]
      • image_src [default: /image_raw]
  • launch/vision_yolo3_detect.launch
      • gpu_device_id [default: 0]
      • score_threshold [default: 0.30]
      • nms_threshold [default: 0.30]
      • network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov3.cfg]
      • pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov3.weights]
      • names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
      • camera_id [default: /]
      • image_src [default: /image_raw]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged vision_darknet_detect at Robotics Stack Exchange

No version for distro kilted showing github. Known supported distros are highlighted in the buttons above.
Package symbol

vision_darknet_detect package from autoware_learn repo

amathutils_lib autoware_build_flags autoware_health_checker emergency_handler gnss lanelet2_extension libvectormap libwaypoint_follower map_file object_map op_planner op_ros_helpers op_simu op_utility ros_observer tvm_utility vector_map vector_map_server vehicle_sim_model autoware_connector ekf_localizer gnss_localizer image_processor imm_ukf_pda_track lidar_apollo_cnn_seg_detect lidar_euclidean_cluster_detect lidar_fake_perception lidar_kf_contour_track lidar_localizer lidar_naive_l_shape_detect lidar_point_pillars lidar_shape_estimation naive_motion_predict ndt_cpu ndt_gpu ndt_tku obj_db pcl_omp_registration pixel_cloud_fusion points_downsampler points_preprocessor pos_db range_vision_fusion road_occupancy_processor roi_object_filter trafficlight_recognizer twist_generator vel_pose_diff_checker vision_beyond_track vision_darknet_detect vision_lane_detect vision_segment_enet_detect vision_ssd_detect astar_search costmap_generator decision_maker dp_planner ff_waypoint_follower freespace_planner lane_planner lattice_planner ll2_global_planner mpc_follower op_global_planner op_local_planner op_simulation_package op_utilities pure_pursuit state_machine_lib twist_filter twist_gate way_planner waypoint_maker waypoint_planner autoware_quickstart_examples autoware_can_msgs autoware_config_msgs autoware_external_msgs autoware_lanelet2_msgs autoware_map_msgs autoware_msgs autoware_system_msgs tablet_socket_msgs vector_map_msgs carla_autoware_bridge gazebo_camera_description gazebo_imu_description lgsvl_simulator_bridge vehicle_gazebo_simulation_interface vehicle_gazebo_simulation_launcher wf_simulator autoware_bag_tools autoware_camera_lidar_calibrator autoware_launcher autoware_launcher_rviz calibration_publisher data_preprocessor graph_tools kitti_box_publisher kitti_launch kitti_player lanelet_aisan_converter log_tools map_tf_generator map_tools marker_downsampler mqtt_socket multi_lidar_calibrator oculus_socket pc2_downsampler rosbag_controller runtime_manager sound_player system_monitor tablet_socket twist2odom udon_socket vehicle_engage_panel vehicle_socket decision_maker_panel detected_objects_visualizer fastvirtualscan gazebo_world_description glviewer integrated_viewer points2image rosinterface autoware_rviz_plugins vehicle_description vehicle_model adi_driver as autoware_driveworks_gmsl_interface autoware_driveworks_interface vlg22c_cam custom_msgs garmin hokuyo javad_navsat_driver kvaser sick_lms5xx memsic_imu microstrain_driver nmea_navsat autoware_pointgrey_drivers sick_ldmrs_description sick_ldmrs_driver sick_ldmrs_laser sick_ldmrs_msgs sick_ldmrs_tools vectacam xsens_driver ymc ds4 ds4_driver ds4_msgs lanelet2 lanelet2_core lanelet2_examples lanelet2_io lanelet2_maps lanelet2_matching lanelet2_projection lanelet2_python lanelet2_routing lanelet2_traffic_rules lanelet2_validation mrt_cmake_modules

ROS Distro
github

Package Summary

Tags No category tags.
Version 1.12.0
License Apache 2
Build type CATKIN
Use RECOMMENDED

Repository Summary

Description autoware.ai perf
Checkout URI https://github.com/is-whale/autoware_learn.git
VCS Type git
VCS Version 1.14
Last Updated 2025-03-14
Dev Status UNKNOWN
Released UNRELEASED
Tags No category tags.
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

darknet image detector

Additional Links

No additional links.

Maintainers

  • Abraham Monrroy

Authors

No additional authors.

Vision Darknet Detect

Autoware package based on Darknet that supports Yolov3 and Yolov2 image detector.

Requirements

  • NVIDIA GPU with CUDA installed
  • Pretrained YOLOv3 or YOLOv2 model on COCO dataset, Models found on the YOLO website.
  • The weights file must be placed in vision_darknet_detect/darknet/data/.

How to launch

  • From a sourced terminal:

    • roslaunch vision_darknet_detect vision_yolo3_detect.launch
    • roslaunch vision_darknet_detect vision_yolo2_detect.launch
  • From Runtime Manager:

Computing Tab -> Detection/ vision_detector -> vision_darknet_detect You can change the config and weights file, as well as other parameters, by clicking [app]

Parameters

Launch file available parameters:

Parameter Type Description
score_threshold Double Detections with a confidence value larger than this value will be displayed. Default 0.5.
nms_threshold Double Non-Maximum suppresion area threshold ratio to merge proposals. Default 0.45.
network_definition_file String Network architecture definition configuration file. Default yolov3.cfg.
pretrained_model_file String Path to pretrained model. Default yolov3.weights.
camera_id String Camera workspace. Default /.
image_src String Image source topic. Default /image_raw.
names_file String Path to pretrained model. Default coco.names.

Subscribed topics

Topic Type Objective
/image_raw sensor_msgs/Image Source image stream to perform detection.
/config/Yolo3 autoware_config_msgs/ConfigSSD Configuration adjustment for threshold.

Published topics

Topic Type Objective
/detection/vision_objects autoware_msgs::DetectedObjectArray Contains the coordinates of the bounding box in image coordinates for detected objects.

Video

Yolo v3 Autoware

CHANGELOG

Changelog for package vision_yolo3_detect

1.11.0 (2019-03-21)

  • Removing CUDA dependencies for Darknet Yolov3 (#1784)

    * Removing CUDA dependencies for Darknet yolov3 If the host machine does not have CUDA, this will build the vision_darknet_detect package based on a pre-built darknet directory (which doesn't require CUDA as there are no CUDA dependencies for yolov3).

    * Update ros/src/computing/perception/detection/vision_detector/packages/vision_darknet_detect/CMakeLists.txt Co-Authored-By: K1504296 <<greytrt@gmail.com>>

  • Fix license notice in corresponding package.xml

  • Initial release of object filter

  • Contributors: Abraham Monrroy, Theodore, amc-nu

1.10.0 (2019-01-17)

  • Fixes for catkin_make
  • [fix] SSD detector, cmake colcon (#1837)
    • Fixes for new colcon script on ssd cuda based node

    • Fixed to RTM and darknet launch files

    • catkin_fix

      • catkin & colcon build successfully
    • reverted back run to devel space (for the time being)
  • Switch to Apache 2 license (develop branch) (#1741)
    • Switch to Apache 2

    * Replace BSD-3 license header with Apache 2 and reassign copyright to the Autoware Foundation.

    • Update license on Python files
    • Update copyright years
    • Add #ifndef/define _POINTS_IMAGE_H_
    • Updated license comment
  • Use colcon as the build tool (#1704)
    • Switch to colcon as the build tool instead of catkin
    • Added cmake-target
    • Added note about the second colcon call
    • Added warning about catkin* scripts being deprecated
    • Fix COLCON_OPTS
    • Added install targets
    • Update Docker image tags
    • Message packages fixes
    • Fix missing dependency
  • Feature/perception visualization cleanup (#1648)
      • Initial commit for visualization package
    • Removal of all visualization messages from perception nodes

    • Visualization dependency removal

    • Launch file modification

      • Fixes to visualization
    • Error on Clustering CPU

    • Reduce verbosity on markers

    • intial commit

      • Changed to 2 spaces indentation
    • Added README

    • Fixed README messages type

    • 2 space indenting

    • ros clang format

    • Publish acceleration and velocity from ukf tracker

    • Remove hardcoded path

    • Updated README

    • updated prototype

    • Prototype update for header and usage

    • Removed unknown label from being reported

    • Updated publishing orientation to match develop

      • Published all the trackers

File truncated at 100 lines see the full file

Dependant Packages

No known dependants.

Launch files

  • launch/vision_yolo2_detect.launch
      • gpu_device_id [default: 0]
      • score_threshold [default: 0.30]
      • nms_threshold [default: 0.45]
      • network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov2.cfg]
      • pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov2.weights]
      • names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
      • camera_id [default: /]
      • image_src [default: /image_raw]
  • launch/vision_yolo3_detect.launch
      • gpu_device_id [default: 0]
      • score_threshold [default: 0.30]
      • nms_threshold [default: 0.30]
      • network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov3.cfg]
      • pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov3.weights]
      • names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
      • camera_id [default: /]
      • image_src [default: /image_raw]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged vision_darknet_detect at Robotics Stack Exchange

No version for distro rolling showing github. Known supported distros are highlighted in the buttons above.
Package symbol

vision_darknet_detect package from autoware_learn repo

amathutils_lib autoware_build_flags autoware_health_checker emergency_handler gnss lanelet2_extension libvectormap libwaypoint_follower map_file object_map op_planner op_ros_helpers op_simu op_utility ros_observer tvm_utility vector_map vector_map_server vehicle_sim_model autoware_connector ekf_localizer gnss_localizer image_processor imm_ukf_pda_track lidar_apollo_cnn_seg_detect lidar_euclidean_cluster_detect lidar_fake_perception lidar_kf_contour_track lidar_localizer lidar_naive_l_shape_detect lidar_point_pillars lidar_shape_estimation naive_motion_predict ndt_cpu ndt_gpu ndt_tku obj_db pcl_omp_registration pixel_cloud_fusion points_downsampler points_preprocessor pos_db range_vision_fusion road_occupancy_processor roi_object_filter trafficlight_recognizer twist_generator vel_pose_diff_checker vision_beyond_track vision_darknet_detect vision_lane_detect vision_segment_enet_detect vision_ssd_detect astar_search costmap_generator decision_maker dp_planner ff_waypoint_follower freespace_planner lane_planner lattice_planner ll2_global_planner mpc_follower op_global_planner op_local_planner op_simulation_package op_utilities pure_pursuit state_machine_lib twist_filter twist_gate way_planner waypoint_maker waypoint_planner autoware_quickstart_examples autoware_can_msgs autoware_config_msgs autoware_external_msgs autoware_lanelet2_msgs autoware_map_msgs autoware_msgs autoware_system_msgs tablet_socket_msgs vector_map_msgs carla_autoware_bridge gazebo_camera_description gazebo_imu_description lgsvl_simulator_bridge vehicle_gazebo_simulation_interface vehicle_gazebo_simulation_launcher wf_simulator autoware_bag_tools autoware_camera_lidar_calibrator autoware_launcher autoware_launcher_rviz calibration_publisher data_preprocessor graph_tools kitti_box_publisher kitti_launch kitti_player lanelet_aisan_converter log_tools map_tf_generator map_tools marker_downsampler mqtt_socket multi_lidar_calibrator oculus_socket pc2_downsampler rosbag_controller runtime_manager sound_player system_monitor tablet_socket twist2odom udon_socket vehicle_engage_panel vehicle_socket decision_maker_panel detected_objects_visualizer fastvirtualscan gazebo_world_description glviewer integrated_viewer points2image rosinterface autoware_rviz_plugins vehicle_description vehicle_model adi_driver as autoware_driveworks_gmsl_interface autoware_driveworks_interface vlg22c_cam custom_msgs garmin hokuyo javad_navsat_driver kvaser sick_lms5xx memsic_imu microstrain_driver nmea_navsat autoware_pointgrey_drivers sick_ldmrs_description sick_ldmrs_driver sick_ldmrs_laser sick_ldmrs_msgs sick_ldmrs_tools vectacam xsens_driver ymc ds4 ds4_driver ds4_msgs lanelet2 lanelet2_core lanelet2_examples lanelet2_io lanelet2_maps lanelet2_matching lanelet2_projection lanelet2_python lanelet2_routing lanelet2_traffic_rules lanelet2_validation mrt_cmake_modules

ROS Distro
github

Package Summary

Tags No category tags.
Version 1.12.0
License Apache 2
Build type CATKIN
Use RECOMMENDED

Repository Summary

Description autoware.ai perf
Checkout URI https://github.com/is-whale/autoware_learn.git
VCS Type git
VCS Version 1.14
Last Updated 2025-03-14
Dev Status UNKNOWN
Released UNRELEASED
Tags No category tags.
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

darknet image detector

Additional Links

No additional links.

Maintainers

  • Abraham Monrroy

Authors

No additional authors.

Vision Darknet Detect

Autoware package based on Darknet that supports Yolov3 and Yolov2 image detector.

Requirements

  • NVIDIA GPU with CUDA installed
  • Pretrained YOLOv3 or YOLOv2 model on COCO dataset, Models found on the YOLO website.
  • The weights file must be placed in vision_darknet_detect/darknet/data/.

How to launch

  • From a sourced terminal:

    • roslaunch vision_darknet_detect vision_yolo3_detect.launch
    • roslaunch vision_darknet_detect vision_yolo2_detect.launch
  • From Runtime Manager:

Computing Tab -> Detection/ vision_detector -> vision_darknet_detect You can change the config and weights file, as well as other parameters, by clicking [app]

Parameters

Launch file available parameters:

Parameter Type Description
score_threshold Double Detections with a confidence value larger than this value will be displayed. Default 0.5.
nms_threshold Double Non-Maximum suppresion area threshold ratio to merge proposals. Default 0.45.
network_definition_file String Network architecture definition configuration file. Default yolov3.cfg.
pretrained_model_file String Path to pretrained model. Default yolov3.weights.
camera_id String Camera workspace. Default /.
image_src String Image source topic. Default /image_raw.
names_file String Path to pretrained model. Default coco.names.

Subscribed topics

Topic Type Objective
/image_raw sensor_msgs/Image Source image stream to perform detection.
/config/Yolo3 autoware_config_msgs/ConfigSSD Configuration adjustment for threshold.

Published topics

Topic Type Objective
/detection/vision_objects autoware_msgs::DetectedObjectArray Contains the coordinates of the bounding box in image coordinates for detected objects.

Video

Yolo v3 Autoware

CHANGELOG

Changelog for package vision_yolo3_detect

1.11.0 (2019-03-21)

  • Removing CUDA dependencies for Darknet Yolov3 (#1784)

    * Removing CUDA dependencies for Darknet yolov3 If the host machine does not have CUDA, this will build the vision_darknet_detect package based on a pre-built darknet directory (which doesn't require CUDA as there are no CUDA dependencies for yolov3).

    * Update ros/src/computing/perception/detection/vision_detector/packages/vision_darknet_detect/CMakeLists.txt Co-Authored-By: K1504296 <<greytrt@gmail.com>>

  • Fix license notice in corresponding package.xml

  • Initial release of object filter

  • Contributors: Abraham Monrroy, Theodore, amc-nu

1.10.0 (2019-01-17)

  • Fixes for catkin_make
  • [fix] SSD detector, cmake colcon (#1837)
    • Fixes for new colcon script on ssd cuda based node

    • Fixed to RTM and darknet launch files

    • catkin_fix

      • catkin & colcon build successfully
    • reverted back run to devel space (for the time being)
  • Switch to Apache 2 license (develop branch) (#1741)
    • Switch to Apache 2

    * Replace BSD-3 license header with Apache 2 and reassign copyright to the Autoware Foundation.

    • Update license on Python files
    • Update copyright years
    • Add #ifndef/define _POINTS_IMAGE_H_
    • Updated license comment
  • Use colcon as the build tool (#1704)
    • Switch to colcon as the build tool instead of catkin
    • Added cmake-target
    • Added note about the second colcon call
    • Added warning about catkin* scripts being deprecated
    • Fix COLCON_OPTS
    • Added install targets
    • Update Docker image tags
    • Message packages fixes
    • Fix missing dependency
  • Feature/perception visualization cleanup (#1648)
      • Initial commit for visualization package
    • Removal of all visualization messages from perception nodes

    • Visualization dependency removal

    • Launch file modification

      • Fixes to visualization
    • Error on Clustering CPU

    • Reduce verbosity on markers

    • intial commit

      • Changed to 2 spaces indentation
    • Added README

    • Fixed README messages type

    • 2 space indenting

    • ros clang format

    • Publish acceleration and velocity from ukf tracker

    • Remove hardcoded path

    • Updated README

    • updated prototype

    • Prototype update for header and usage

    • Removed unknown label from being reported

    • Updated publishing orientation to match develop

      • Published all the trackers

File truncated at 100 lines see the full file

Dependant Packages

No known dependants.

Launch files

  • launch/vision_yolo2_detect.launch
      • gpu_device_id [default: 0]
      • score_threshold [default: 0.30]
      • nms_threshold [default: 0.45]
      • network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov2.cfg]
      • pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov2.weights]
      • names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
      • camera_id [default: /]
      • image_src [default: /image_raw]
  • launch/vision_yolo3_detect.launch
      • gpu_device_id [default: 0]
      • score_threshold [default: 0.30]
      • nms_threshold [default: 0.30]
      • network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov3.cfg]
      • pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov3.weights]
      • names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
      • camera_id [default: /]
      • image_src [default: /image_raw]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged vision_darknet_detect at Robotics Stack Exchange

Package symbol

vision_darknet_detect package from autoware_learn repo

amathutils_lib autoware_build_flags autoware_health_checker emergency_handler gnss lanelet2_extension libvectormap libwaypoint_follower map_file object_map op_planner op_ros_helpers op_simu op_utility ros_observer tvm_utility vector_map vector_map_server vehicle_sim_model autoware_connector ekf_localizer gnss_localizer image_processor imm_ukf_pda_track lidar_apollo_cnn_seg_detect lidar_euclidean_cluster_detect lidar_fake_perception lidar_kf_contour_track lidar_localizer lidar_naive_l_shape_detect lidar_point_pillars lidar_shape_estimation naive_motion_predict ndt_cpu ndt_gpu ndt_tku obj_db pcl_omp_registration pixel_cloud_fusion points_downsampler points_preprocessor pos_db range_vision_fusion road_occupancy_processor roi_object_filter trafficlight_recognizer twist_generator vel_pose_diff_checker vision_beyond_track vision_darknet_detect vision_lane_detect vision_segment_enet_detect vision_ssd_detect astar_search costmap_generator decision_maker dp_planner ff_waypoint_follower freespace_planner lane_planner lattice_planner ll2_global_planner mpc_follower op_global_planner op_local_planner op_simulation_package op_utilities pure_pursuit state_machine_lib twist_filter twist_gate way_planner waypoint_maker waypoint_planner autoware_quickstart_examples autoware_can_msgs autoware_config_msgs autoware_external_msgs autoware_lanelet2_msgs autoware_map_msgs autoware_msgs autoware_system_msgs tablet_socket_msgs vector_map_msgs carla_autoware_bridge gazebo_camera_description gazebo_imu_description lgsvl_simulator_bridge vehicle_gazebo_simulation_interface vehicle_gazebo_simulation_launcher wf_simulator autoware_bag_tools autoware_camera_lidar_calibrator autoware_launcher autoware_launcher_rviz calibration_publisher data_preprocessor graph_tools kitti_box_publisher kitti_launch kitti_player lanelet_aisan_converter log_tools map_tf_generator map_tools marker_downsampler mqtt_socket multi_lidar_calibrator oculus_socket pc2_downsampler rosbag_controller runtime_manager sound_player system_monitor tablet_socket twist2odom udon_socket vehicle_engage_panel vehicle_socket decision_maker_panel detected_objects_visualizer fastvirtualscan gazebo_world_description glviewer integrated_viewer points2image rosinterface autoware_rviz_plugins vehicle_description vehicle_model adi_driver as autoware_driveworks_gmsl_interface autoware_driveworks_interface vlg22c_cam custom_msgs garmin hokuyo javad_navsat_driver kvaser sick_lms5xx memsic_imu microstrain_driver nmea_navsat autoware_pointgrey_drivers sick_ldmrs_description sick_ldmrs_driver sick_ldmrs_laser sick_ldmrs_msgs sick_ldmrs_tools vectacam xsens_driver ymc ds4 ds4_driver ds4_msgs lanelet2 lanelet2_core lanelet2_examples lanelet2_io lanelet2_maps lanelet2_matching lanelet2_projection lanelet2_python lanelet2_routing lanelet2_traffic_rules lanelet2_validation mrt_cmake_modules

ROS Distro
github

Package Summary

Tags No category tags.
Version 1.12.0
License Apache 2
Build type CATKIN
Use RECOMMENDED

Repository Summary

Description autoware.ai perf
Checkout URI https://github.com/is-whale/autoware_learn.git
VCS Type git
VCS Version 1.14
Last Updated 2025-03-14
Dev Status UNKNOWN
Released UNRELEASED
Tags No category tags.
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

darknet image detector

Additional Links

No additional links.

Maintainers

  • Abraham Monrroy

Authors

No additional authors.

Vision Darknet Detect

Autoware package based on Darknet that supports Yolov3 and Yolov2 image detector.

Requirements

  • NVIDIA GPU with CUDA installed
  • Pretrained YOLOv3 or YOLOv2 model on COCO dataset, Models found on the YOLO website.
  • The weights file must be placed in vision_darknet_detect/darknet/data/.

How to launch

  • From a sourced terminal:

    • roslaunch vision_darknet_detect vision_yolo3_detect.launch
    • roslaunch vision_darknet_detect vision_yolo2_detect.launch
  • From Runtime Manager:

Computing Tab -> Detection/ vision_detector -> vision_darknet_detect You can change the config and weights file, as well as other parameters, by clicking [app]

Parameters

Launch file available parameters:

Parameter Type Description
score_threshold Double Detections with a confidence value larger than this value will be displayed. Default 0.5.
nms_threshold Double Non-Maximum suppresion area threshold ratio to merge proposals. Default 0.45.
network_definition_file String Network architecture definition configuration file. Default yolov3.cfg.
pretrained_model_file String Path to pretrained model. Default yolov3.weights.
camera_id String Camera workspace. Default /.
image_src String Image source topic. Default /image_raw.
names_file String Path to pretrained model. Default coco.names.

Subscribed topics

Topic Type Objective
/image_raw sensor_msgs/Image Source image stream to perform detection.
/config/Yolo3 autoware_config_msgs/ConfigSSD Configuration adjustment for threshold.

Published topics

Topic Type Objective
/detection/vision_objects autoware_msgs::DetectedObjectArray Contains the coordinates of the bounding box in image coordinates for detected objects.

Video

Yolo v3 Autoware

CHANGELOG

Changelog for package vision_yolo3_detect

1.11.0 (2019-03-21)

  • Removing CUDA dependencies for Darknet Yolov3 (#1784)

    * Removing CUDA dependencies for Darknet yolov3 If the host machine does not have CUDA, this will build the vision_darknet_detect package based on a pre-built darknet directory (which doesn't require CUDA as there are no CUDA dependencies for yolov3).

    * Update ros/src/computing/perception/detection/vision_detector/packages/vision_darknet_detect/CMakeLists.txt Co-Authored-By: K1504296 <<greytrt@gmail.com>>

  • Fix license notice in corresponding package.xml

  • Initial release of object filter

  • Contributors: Abraham Monrroy, Theodore, amc-nu

1.10.0 (2019-01-17)

  • Fixes for catkin_make
  • [fix] SSD detector, cmake colcon (#1837)
    • Fixes for new colcon script on ssd cuda based node

    • Fixed to RTM and darknet launch files

    • catkin_fix

      • catkin & colcon build successfully
    • reverted back run to devel space (for the time being)
  • Switch to Apache 2 license (develop branch) (#1741)
    • Switch to Apache 2

    * Replace BSD-3 license header with Apache 2 and reassign copyright to the Autoware Foundation.

    • Update license on Python files
    • Update copyright years
    • Add #ifndef/define _POINTS_IMAGE_H_
    • Updated license comment
  • Use colcon as the build tool (#1704)
    • Switch to colcon as the build tool instead of catkin
    • Added cmake-target
    • Added note about the second colcon call
    • Added warning about catkin* scripts being deprecated
    • Fix COLCON_OPTS
    • Added install targets
    • Update Docker image tags
    • Message packages fixes
    • Fix missing dependency
  • Feature/perception visualization cleanup (#1648)
      • Initial commit for visualization package
    • Removal of all visualization messages from perception nodes

    • Visualization dependency removal

    • Launch file modification

      • Fixes to visualization
    • Error on Clustering CPU

    • Reduce verbosity on markers

    • intial commit

      • Changed to 2 spaces indentation
    • Added README

    • Fixed README messages type

    • 2 space indenting

    • ros clang format

    • Publish acceleration and velocity from ukf tracker

    • Remove hardcoded path

    • Updated README

    • updated prototype

    • Prototype update for header and usage

    • Removed unknown label from being reported

    • Updated publishing orientation to match develop

      • Published all the trackers

File truncated at 100 lines see the full file

Dependant Packages

No known dependants.

Launch files

  • launch/vision_yolo2_detect.launch
      • gpu_device_id [default: 0]
      • score_threshold [default: 0.30]
      • nms_threshold [default: 0.45]
      • network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov2.cfg]
      • pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov2.weights]
      • names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
      • camera_id [default: /]
      • image_src [default: /image_raw]
  • launch/vision_yolo3_detect.launch
      • gpu_device_id [default: 0]
      • score_threshold [default: 0.30]
      • nms_threshold [default: 0.30]
      • network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov3.cfg]
      • pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov3.weights]
      • names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
      • camera_id [default: /]
      • image_src [default: /image_raw]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged vision_darknet_detect at Robotics Stack Exchange

No version for distro galactic showing github. Known supported distros are highlighted in the buttons above.
Package symbol

vision_darknet_detect package from autoware_learn repo

amathutils_lib autoware_build_flags autoware_health_checker emergency_handler gnss lanelet2_extension libvectormap libwaypoint_follower map_file object_map op_planner op_ros_helpers op_simu op_utility ros_observer tvm_utility vector_map vector_map_server vehicle_sim_model autoware_connector ekf_localizer gnss_localizer image_processor imm_ukf_pda_track lidar_apollo_cnn_seg_detect lidar_euclidean_cluster_detect lidar_fake_perception lidar_kf_contour_track lidar_localizer lidar_naive_l_shape_detect lidar_point_pillars lidar_shape_estimation naive_motion_predict ndt_cpu ndt_gpu ndt_tku obj_db pcl_omp_registration pixel_cloud_fusion points_downsampler points_preprocessor pos_db range_vision_fusion road_occupancy_processor roi_object_filter trafficlight_recognizer twist_generator vel_pose_diff_checker vision_beyond_track vision_darknet_detect vision_lane_detect vision_segment_enet_detect vision_ssd_detect astar_search costmap_generator decision_maker dp_planner ff_waypoint_follower freespace_planner lane_planner lattice_planner ll2_global_planner mpc_follower op_global_planner op_local_planner op_simulation_package op_utilities pure_pursuit state_machine_lib twist_filter twist_gate way_planner waypoint_maker waypoint_planner autoware_quickstart_examples autoware_can_msgs autoware_config_msgs autoware_external_msgs autoware_lanelet2_msgs autoware_map_msgs autoware_msgs autoware_system_msgs tablet_socket_msgs vector_map_msgs carla_autoware_bridge gazebo_camera_description gazebo_imu_description lgsvl_simulator_bridge vehicle_gazebo_simulation_interface vehicle_gazebo_simulation_launcher wf_simulator autoware_bag_tools autoware_camera_lidar_calibrator autoware_launcher autoware_launcher_rviz calibration_publisher data_preprocessor graph_tools kitti_box_publisher kitti_launch kitti_player lanelet_aisan_converter log_tools map_tf_generator map_tools marker_downsampler mqtt_socket multi_lidar_calibrator oculus_socket pc2_downsampler rosbag_controller runtime_manager sound_player system_monitor tablet_socket twist2odom udon_socket vehicle_engage_panel vehicle_socket decision_maker_panel detected_objects_visualizer fastvirtualscan gazebo_world_description glviewer integrated_viewer points2image rosinterface autoware_rviz_plugins vehicle_description vehicle_model adi_driver as autoware_driveworks_gmsl_interface autoware_driveworks_interface vlg22c_cam custom_msgs garmin hokuyo javad_navsat_driver kvaser sick_lms5xx memsic_imu microstrain_driver nmea_navsat autoware_pointgrey_drivers sick_ldmrs_description sick_ldmrs_driver sick_ldmrs_laser sick_ldmrs_msgs sick_ldmrs_tools vectacam xsens_driver ymc ds4 ds4_driver ds4_msgs lanelet2 lanelet2_core lanelet2_examples lanelet2_io lanelet2_maps lanelet2_matching lanelet2_projection lanelet2_python lanelet2_routing lanelet2_traffic_rules lanelet2_validation mrt_cmake_modules

ROS Distro
github

Package Summary

Tags No category tags.
Version 1.12.0
License Apache 2
Build type CATKIN
Use RECOMMENDED

Repository Summary

Description autoware.ai perf
Checkout URI https://github.com/is-whale/autoware_learn.git
VCS Type git
VCS Version 1.14
Last Updated 2025-03-14
Dev Status UNKNOWN
Released UNRELEASED
Tags No category tags.
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

darknet image detector

Additional Links

No additional links.

Maintainers

  • Abraham Monrroy

Authors

No additional authors.

Vision Darknet Detect

Autoware package based on Darknet that supports Yolov3 and Yolov2 image detector.

Requirements

  • NVIDIA GPU with CUDA installed
  • Pretrained YOLOv3 or YOLOv2 model on COCO dataset, Models found on the YOLO website.
  • The weights file must be placed in vision_darknet_detect/darknet/data/.

How to launch

  • From a sourced terminal:

    • roslaunch vision_darknet_detect vision_yolo3_detect.launch
    • roslaunch vision_darknet_detect vision_yolo2_detect.launch
  • From Runtime Manager:

Computing Tab -> Detection/ vision_detector -> vision_darknet_detect You can change the config and weights file, as well as other parameters, by clicking [app]

Parameters

Launch file available parameters:

Parameter Type Description
score_threshold Double Detections with a confidence value larger than this value will be displayed. Default 0.5.
nms_threshold Double Non-Maximum suppresion area threshold ratio to merge proposals. Default 0.45.
network_definition_file String Network architecture definition configuration file. Default yolov3.cfg.
pretrained_model_file String Path to pretrained model. Default yolov3.weights.
camera_id String Camera workspace. Default /.
image_src String Image source topic. Default /image_raw.
names_file String Path to pretrained model. Default coco.names.

Subscribed topics

Topic Type Objective
/image_raw sensor_msgs/Image Source image stream to perform detection.
/config/Yolo3 autoware_config_msgs/ConfigSSD Configuration adjustment for threshold.

Published topics

Topic Type Objective
/detection/vision_objects autoware_msgs::DetectedObjectArray Contains the coordinates of the bounding box in image coordinates for detected objects.

Video

Yolo v3 Autoware

CHANGELOG

Changelog for package vision_yolo3_detect

1.11.0 (2019-03-21)

  • Removing CUDA dependencies for Darknet Yolov3 (#1784)

    * Removing CUDA dependencies for Darknet yolov3 If the host machine does not have CUDA, this will build the vision_darknet_detect package based on a pre-built darknet directory (which doesn't require CUDA as there are no CUDA dependencies for yolov3).

    * Update ros/src/computing/perception/detection/vision_detector/packages/vision_darknet_detect/CMakeLists.txt Co-Authored-By: K1504296 <<greytrt@gmail.com>>

  • Fix license notice in corresponding package.xml

  • Initial release of object filter

  • Contributors: Abraham Monrroy, Theodore, amc-nu

1.10.0 (2019-01-17)

  • Fixes for catkin_make
  • [fix] SSD detector, cmake colcon (#1837)
    • Fixes for new colcon script on ssd cuda based node

    • Fixed to RTM and darknet launch files

    • catkin_fix

      • catkin & colcon build successfully
    • reverted back run to devel space (for the time being)
  • Switch to Apache 2 license (develop branch) (#1741)
    • Switch to Apache 2

    * Replace BSD-3 license header with Apache 2 and reassign copyright to the Autoware Foundation.

    • Update license on Python files
    • Update copyright years
    • Add #ifndef/define _POINTS_IMAGE_H_
    • Updated license comment
  • Use colcon as the build tool (#1704)
    • Switch to colcon as the build tool instead of catkin
    • Added cmake-target
    • Added note about the second colcon call
    • Added warning about catkin* scripts being deprecated
    • Fix COLCON_OPTS
    • Added install targets
    • Update Docker image tags
    • Message packages fixes
    • Fix missing dependency
  • Feature/perception visualization cleanup (#1648)
      • Initial commit for visualization package
    • Removal of all visualization messages from perception nodes

    • Visualization dependency removal

    • Launch file modification

      • Fixes to visualization
    • Error on Clustering CPU

    • Reduce verbosity on markers

    • intial commit

      • Changed to 2 spaces indentation
    • Added README

    • Fixed README messages type

    • 2 space indenting

    • ros clang format

    • Publish acceleration and velocity from ukf tracker

    • Remove hardcoded path

    • Updated README

    • updated prototype

    • Prototype update for header and usage

    • Removed unknown label from being reported

    • Updated publishing orientation to match develop

      • Published all the trackers

File truncated at 100 lines see the full file

Dependant Packages

No known dependants.

Launch files

  • launch/vision_yolo2_detect.launch
      • gpu_device_id [default: 0]
      • score_threshold [default: 0.30]
      • nms_threshold [default: 0.45]
      • network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov2.cfg]
      • pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov2.weights]
      • names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
      • camera_id [default: /]
      • image_src [default: /image_raw]
  • launch/vision_yolo3_detect.launch
      • gpu_device_id [default: 0]
      • score_threshold [default: 0.30]
      • nms_threshold [default: 0.30]
      • network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov3.cfg]
      • pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov3.weights]
      • names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
      • camera_id [default: /]
      • image_src [default: /image_raw]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged vision_darknet_detect at Robotics Stack Exchange

No version for distro iron showing github. Known supported distros are highlighted in the buttons above.
Package symbol

vision_darknet_detect package from autoware_learn repo

amathutils_lib autoware_build_flags autoware_health_checker emergency_handler gnss lanelet2_extension libvectormap libwaypoint_follower map_file object_map op_planner op_ros_helpers op_simu op_utility ros_observer tvm_utility vector_map vector_map_server vehicle_sim_model autoware_connector ekf_localizer gnss_localizer image_processor imm_ukf_pda_track lidar_apollo_cnn_seg_detect lidar_euclidean_cluster_detect lidar_fake_perception lidar_kf_contour_track lidar_localizer lidar_naive_l_shape_detect lidar_point_pillars lidar_shape_estimation naive_motion_predict ndt_cpu ndt_gpu ndt_tku obj_db pcl_omp_registration pixel_cloud_fusion points_downsampler points_preprocessor pos_db range_vision_fusion road_occupancy_processor roi_object_filter trafficlight_recognizer twist_generator vel_pose_diff_checker vision_beyond_track vision_darknet_detect vision_lane_detect vision_segment_enet_detect vision_ssd_detect astar_search costmap_generator decision_maker dp_planner ff_waypoint_follower freespace_planner lane_planner lattice_planner ll2_global_planner mpc_follower op_global_planner op_local_planner op_simulation_package op_utilities pure_pursuit state_machine_lib twist_filter twist_gate way_planner waypoint_maker waypoint_planner autoware_quickstart_examples autoware_can_msgs autoware_config_msgs autoware_external_msgs autoware_lanelet2_msgs autoware_map_msgs autoware_msgs autoware_system_msgs tablet_socket_msgs vector_map_msgs carla_autoware_bridge gazebo_camera_description gazebo_imu_description lgsvl_simulator_bridge vehicle_gazebo_simulation_interface vehicle_gazebo_simulation_launcher wf_simulator autoware_bag_tools autoware_camera_lidar_calibrator autoware_launcher autoware_launcher_rviz calibration_publisher data_preprocessor graph_tools kitti_box_publisher kitti_launch kitti_player lanelet_aisan_converter log_tools map_tf_generator map_tools marker_downsampler mqtt_socket multi_lidar_calibrator oculus_socket pc2_downsampler rosbag_controller runtime_manager sound_player system_monitor tablet_socket twist2odom udon_socket vehicle_engage_panel vehicle_socket decision_maker_panel detected_objects_visualizer fastvirtualscan gazebo_world_description glviewer integrated_viewer points2image rosinterface autoware_rviz_plugins vehicle_description vehicle_model adi_driver as autoware_driveworks_gmsl_interface autoware_driveworks_interface vlg22c_cam custom_msgs garmin hokuyo javad_navsat_driver kvaser sick_lms5xx memsic_imu microstrain_driver nmea_navsat autoware_pointgrey_drivers sick_ldmrs_description sick_ldmrs_driver sick_ldmrs_laser sick_ldmrs_msgs sick_ldmrs_tools vectacam xsens_driver ymc ds4 ds4_driver ds4_msgs lanelet2 lanelet2_core lanelet2_examples lanelet2_io lanelet2_maps lanelet2_matching lanelet2_projection lanelet2_python lanelet2_routing lanelet2_traffic_rules lanelet2_validation mrt_cmake_modules

ROS Distro
github

Package Summary

Tags No category tags.
Version 1.12.0
License Apache 2
Build type CATKIN
Use RECOMMENDED

Repository Summary

Description autoware.ai perf
Checkout URI https://github.com/is-whale/autoware_learn.git
VCS Type git
VCS Version 1.14
Last Updated 2025-03-14
Dev Status UNKNOWN
Released UNRELEASED
Tags No category tags.
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

darknet image detector

Additional Links

No additional links.

Maintainers

  • Abraham Monrroy

Authors

No additional authors.

Vision Darknet Detect

Autoware package based on Darknet that supports Yolov3 and Yolov2 image detector.

Requirements

  • NVIDIA GPU with CUDA installed
  • Pretrained YOLOv3 or YOLOv2 model on COCO dataset, Models found on the YOLO website.
  • The weights file must be placed in vision_darknet_detect/darknet/data/.

How to launch

  • From a sourced terminal:

    • roslaunch vision_darknet_detect vision_yolo3_detect.launch
    • roslaunch vision_darknet_detect vision_yolo2_detect.launch
  • From Runtime Manager:

Computing Tab -> Detection/ vision_detector -> vision_darknet_detect You can change the config and weights file, as well as other parameters, by clicking [app]

Parameters

Launch file available parameters:

Parameter Type Description
score_threshold Double Detections with a confidence value larger than this value will be displayed. Default 0.5.
nms_threshold Double Non-Maximum suppresion area threshold ratio to merge proposals. Default 0.45.
network_definition_file String Network architecture definition configuration file. Default yolov3.cfg.
pretrained_model_file String Path to pretrained model. Default yolov3.weights.
camera_id String Camera workspace. Default /.
image_src String Image source topic. Default /image_raw.
names_file String Path to pretrained model. Default coco.names.

Subscribed topics

Topic Type Objective
/image_raw sensor_msgs/Image Source image stream to perform detection.
/config/Yolo3 autoware_config_msgs/ConfigSSD Configuration adjustment for threshold.

Published topics

Topic Type Objective
/detection/vision_objects autoware_msgs::DetectedObjectArray Contains the coordinates of the bounding box in image coordinates for detected objects.

Video

Yolo v3 Autoware

CHANGELOG

Changelog for package vision_yolo3_detect

1.11.0 (2019-03-21)

  • Removing CUDA dependencies for Darknet Yolov3 (#1784)

    * Removing CUDA dependencies for Darknet yolov3 If the host machine does not have CUDA, this will build the vision_darknet_detect package based on a pre-built darknet directory (which doesn't require CUDA as there are no CUDA dependencies for yolov3).

    * Update ros/src/computing/perception/detection/vision_detector/packages/vision_darknet_detect/CMakeLists.txt Co-Authored-By: K1504296 <<greytrt@gmail.com>>

  • Fix license notice in corresponding package.xml

  • Initial release of object filter

  • Contributors: Abraham Monrroy, Theodore, amc-nu

1.10.0 (2019-01-17)

  • Fixes for catkin_make
  • [fix] SSD detector, cmake colcon (#1837)
    • Fixes for new colcon script on ssd cuda based node

    • Fixed to RTM and darknet launch files

    • catkin_fix

      • catkin & colcon build successfully
    • reverted back run to devel space (for the time being)
  • Switch to Apache 2 license (develop branch) (#1741)
    • Switch to Apache 2

    * Replace BSD-3 license header with Apache 2 and reassign copyright to the Autoware Foundation.

    • Update license on Python files
    • Update copyright years
    • Add #ifndef/define _POINTS_IMAGE_H_
    • Updated license comment
  • Use colcon as the build tool (#1704)
    • Switch to colcon as the build tool instead of catkin
    • Added cmake-target
    • Added note about the second colcon call
    • Added warning about catkin* scripts being deprecated
    • Fix COLCON_OPTS
    • Added install targets
    • Update Docker image tags
    • Message packages fixes
    • Fix missing dependency
  • Feature/perception visualization cleanup (#1648)
      • Initial commit for visualization package
    • Removal of all visualization messages from perception nodes

    • Visualization dependency removal

    • Launch file modification

      • Fixes to visualization
    • Error on Clustering CPU

    • Reduce verbosity on markers

    • intial commit

      • Changed to 2 spaces indentation
    • Added README

    • Fixed README messages type

    • 2 space indenting

    • ros clang format

    • Publish acceleration and velocity from ukf tracker

    • Remove hardcoded path

    • Updated README

    • updated prototype

    • Prototype update for header and usage

    • Removed unknown label from being reported

    • Updated publishing orientation to match develop

      • Published all the trackers

File truncated at 100 lines see the full file

Dependant Packages

No known dependants.

Launch files

  • launch/vision_yolo2_detect.launch
      • gpu_device_id [default: 0]
      • score_threshold [default: 0.30]
      • nms_threshold [default: 0.45]
      • network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov2.cfg]
      • pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov2.weights]
      • names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
      • camera_id [default: /]
      • image_src [default: /image_raw]
  • launch/vision_yolo3_detect.launch
      • gpu_device_id [default: 0]
      • score_threshold [default: 0.30]
      • nms_threshold [default: 0.30]
      • network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov3.cfg]
      • pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov3.weights]
      • names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
      • camera_id [default: /]
      • image_src [default: /image_raw]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged vision_darknet_detect at Robotics Stack Exchange

No version for distro melodic showing github. Known supported distros are highlighted in the buttons above.
Package symbol

vision_darknet_detect package from autoware_learn repo

amathutils_lib autoware_build_flags autoware_health_checker emergency_handler gnss lanelet2_extension libvectormap libwaypoint_follower map_file object_map op_planner op_ros_helpers op_simu op_utility ros_observer tvm_utility vector_map vector_map_server vehicle_sim_model autoware_connector ekf_localizer gnss_localizer image_processor imm_ukf_pda_track lidar_apollo_cnn_seg_detect lidar_euclidean_cluster_detect lidar_fake_perception lidar_kf_contour_track lidar_localizer lidar_naive_l_shape_detect lidar_point_pillars lidar_shape_estimation naive_motion_predict ndt_cpu ndt_gpu ndt_tku obj_db pcl_omp_registration pixel_cloud_fusion points_downsampler points_preprocessor pos_db range_vision_fusion road_occupancy_processor roi_object_filter trafficlight_recognizer twist_generator vel_pose_diff_checker vision_beyond_track vision_darknet_detect vision_lane_detect vision_segment_enet_detect vision_ssd_detect astar_search costmap_generator decision_maker dp_planner ff_waypoint_follower freespace_planner lane_planner lattice_planner ll2_global_planner mpc_follower op_global_planner op_local_planner op_simulation_package op_utilities pure_pursuit state_machine_lib twist_filter twist_gate way_planner waypoint_maker waypoint_planner autoware_quickstart_examples autoware_can_msgs autoware_config_msgs autoware_external_msgs autoware_lanelet2_msgs autoware_map_msgs autoware_msgs autoware_system_msgs tablet_socket_msgs vector_map_msgs carla_autoware_bridge gazebo_camera_description gazebo_imu_description lgsvl_simulator_bridge vehicle_gazebo_simulation_interface vehicle_gazebo_simulation_launcher wf_simulator autoware_bag_tools autoware_camera_lidar_calibrator autoware_launcher autoware_launcher_rviz calibration_publisher data_preprocessor graph_tools kitti_box_publisher kitti_launch kitti_player lanelet_aisan_converter log_tools map_tf_generator map_tools marker_downsampler mqtt_socket multi_lidar_calibrator oculus_socket pc2_downsampler rosbag_controller runtime_manager sound_player system_monitor tablet_socket twist2odom udon_socket vehicle_engage_panel vehicle_socket decision_maker_panel detected_objects_visualizer fastvirtualscan gazebo_world_description glviewer integrated_viewer points2image rosinterface autoware_rviz_plugins vehicle_description vehicle_model adi_driver as autoware_driveworks_gmsl_interface autoware_driveworks_interface vlg22c_cam custom_msgs garmin hokuyo javad_navsat_driver kvaser sick_lms5xx memsic_imu microstrain_driver nmea_navsat autoware_pointgrey_drivers sick_ldmrs_description sick_ldmrs_driver sick_ldmrs_laser sick_ldmrs_msgs sick_ldmrs_tools vectacam xsens_driver ymc ds4 ds4_driver ds4_msgs lanelet2 lanelet2_core lanelet2_examples lanelet2_io lanelet2_maps lanelet2_matching lanelet2_projection lanelet2_python lanelet2_routing lanelet2_traffic_rules lanelet2_validation mrt_cmake_modules

ROS Distro
github

Package Summary

Tags No category tags.
Version 1.12.0
License Apache 2
Build type CATKIN
Use RECOMMENDED

Repository Summary

Description autoware.ai perf
Checkout URI https://github.com/is-whale/autoware_learn.git
VCS Type git
VCS Version 1.14
Last Updated 2025-03-14
Dev Status UNKNOWN
Released UNRELEASED
Tags No category tags.
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

darknet image detector

Additional Links

No additional links.

Maintainers

  • Abraham Monrroy

Authors

No additional authors.

Vision Darknet Detect

Autoware package based on Darknet that supports Yolov3 and Yolov2 image detector.

Requirements

  • NVIDIA GPU with CUDA installed
  • Pretrained YOLOv3 or YOLOv2 model on COCO dataset, Models found on the YOLO website.
  • The weights file must be placed in vision_darknet_detect/darknet/data/.

How to launch

  • From a sourced terminal:

    • roslaunch vision_darknet_detect vision_yolo3_detect.launch
    • roslaunch vision_darknet_detect vision_yolo2_detect.launch
  • From Runtime Manager:

Computing Tab -> Detection/ vision_detector -> vision_darknet_detect You can change the config and weights file, as well as other parameters, by clicking [app]

Parameters

Launch file available parameters:

Parameter Type Description
score_threshold Double Detections with a confidence value larger than this value will be displayed. Default 0.5.
nms_threshold Double Non-Maximum suppresion area threshold ratio to merge proposals. Default 0.45.
network_definition_file String Network architecture definition configuration file. Default yolov3.cfg.
pretrained_model_file String Path to pretrained model. Default yolov3.weights.
camera_id String Camera workspace. Default /.
image_src String Image source topic. Default /image_raw.
names_file String Path to pretrained model. Default coco.names.

Subscribed topics

Topic Type Objective
/image_raw sensor_msgs/Image Source image stream to perform detection.
/config/Yolo3 autoware_config_msgs/ConfigSSD Configuration adjustment for threshold.

Published topics

Topic Type Objective
/detection/vision_objects autoware_msgs::DetectedObjectArray Contains the coordinates of the bounding box in image coordinates for detected objects.

Video

Yolo v3 Autoware

CHANGELOG

Changelog for package vision_yolo3_detect

1.11.0 (2019-03-21)

  • Removing CUDA dependencies for Darknet Yolov3 (#1784)

    * Removing CUDA dependencies for Darknet yolov3 If the host machine does not have CUDA, this will build the vision_darknet_detect package based on a pre-built darknet directory (which doesn't require CUDA as there are no CUDA dependencies for yolov3).

    * Update ros/src/computing/perception/detection/vision_detector/packages/vision_darknet_detect/CMakeLists.txt Co-Authored-By: K1504296 <<greytrt@gmail.com>>

  • Fix license notice in corresponding package.xml

  • Initial release of object filter

  • Contributors: Abraham Monrroy, Theodore, amc-nu

1.10.0 (2019-01-17)

  • Fixes for catkin_make
  • [fix] SSD detector, cmake colcon (#1837)
    • Fixes for new colcon script on ssd cuda based node

    • Fixed to RTM and darknet launch files

    • catkin_fix

      • catkin & colcon build successfully
    • reverted back run to devel space (for the time being)
  • Switch to Apache 2 license (develop branch) (#1741)
    • Switch to Apache 2

    * Replace BSD-3 license header with Apache 2 and reassign copyright to the Autoware Foundation.

    • Update license on Python files
    • Update copyright years
    • Add #ifndef/define _POINTS_IMAGE_H_
    • Updated license comment
  • Use colcon as the build tool (#1704)
    • Switch to colcon as the build tool instead of catkin
    • Added cmake-target
    • Added note about the second colcon call
    • Added warning about catkin* scripts being deprecated
    • Fix COLCON_OPTS
    • Added install targets
    • Update Docker image tags
    • Message packages fixes
    • Fix missing dependency
  • Feature/perception visualization cleanup (#1648)
      • Initial commit for visualization package
    • Removal of all visualization messages from perception nodes

    • Visualization dependency removal

    • Launch file modification

      • Fixes to visualization
    • Error on Clustering CPU

    • Reduce verbosity on markers

    • intial commit

      • Changed to 2 spaces indentation
    • Added README

    • Fixed README messages type

    • 2 space indenting

    • ros clang format

    • Publish acceleration and velocity from ukf tracker

    • Remove hardcoded path

    • Updated README

    • updated prototype

    • Prototype update for header and usage

    • Removed unknown label from being reported

    • Updated publishing orientation to match develop

      • Published all the trackers

File truncated at 100 lines see the full file

Dependant Packages

No known dependants.

Launch files

  • launch/vision_yolo2_detect.launch
      • gpu_device_id [default: 0]
      • score_threshold [default: 0.30]
      • nms_threshold [default: 0.45]
      • network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov2.cfg]
      • pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov2.weights]
      • names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
      • camera_id [default: /]
      • image_src [default: /image_raw]
  • launch/vision_yolo3_detect.launch
      • gpu_device_id [default: 0]
      • score_threshold [default: 0.30]
      • nms_threshold [default: 0.30]
      • network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov3.cfg]
      • pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov3.weights]
      • names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
      • camera_id [default: /]
      • image_src [default: /image_raw]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged vision_darknet_detect at Robotics Stack Exchange

No version for distro noetic showing github. Known supported distros are highlighted in the buttons above.
Package symbol

vision_darknet_detect package from autoware_learn repo

amathutils_lib autoware_build_flags autoware_health_checker emergency_handler gnss lanelet2_extension libvectormap libwaypoint_follower map_file object_map op_planner op_ros_helpers op_simu op_utility ros_observer tvm_utility vector_map vector_map_server vehicle_sim_model autoware_connector ekf_localizer gnss_localizer image_processor imm_ukf_pda_track lidar_apollo_cnn_seg_detect lidar_euclidean_cluster_detect lidar_fake_perception lidar_kf_contour_track lidar_localizer lidar_naive_l_shape_detect lidar_point_pillars lidar_shape_estimation naive_motion_predict ndt_cpu ndt_gpu ndt_tku obj_db pcl_omp_registration pixel_cloud_fusion points_downsampler points_preprocessor pos_db range_vision_fusion road_occupancy_processor roi_object_filter trafficlight_recognizer twist_generator vel_pose_diff_checker vision_beyond_track vision_darknet_detect vision_lane_detect vision_segment_enet_detect vision_ssd_detect astar_search costmap_generator decision_maker dp_planner ff_waypoint_follower freespace_planner lane_planner lattice_planner ll2_global_planner mpc_follower op_global_planner op_local_planner op_simulation_package op_utilities pure_pursuit state_machine_lib twist_filter twist_gate way_planner waypoint_maker waypoint_planner autoware_quickstart_examples autoware_can_msgs autoware_config_msgs autoware_external_msgs autoware_lanelet2_msgs autoware_map_msgs autoware_msgs autoware_system_msgs tablet_socket_msgs vector_map_msgs carla_autoware_bridge gazebo_camera_description gazebo_imu_description lgsvl_simulator_bridge vehicle_gazebo_simulation_interface vehicle_gazebo_simulation_launcher wf_simulator autoware_bag_tools autoware_camera_lidar_calibrator autoware_launcher autoware_launcher_rviz calibration_publisher data_preprocessor graph_tools kitti_box_publisher kitti_launch kitti_player lanelet_aisan_converter log_tools map_tf_generator map_tools marker_downsampler mqtt_socket multi_lidar_calibrator oculus_socket pc2_downsampler rosbag_controller runtime_manager sound_player system_monitor tablet_socket twist2odom udon_socket vehicle_engage_panel vehicle_socket decision_maker_panel detected_objects_visualizer fastvirtualscan gazebo_world_description glviewer integrated_viewer points2image rosinterface autoware_rviz_plugins vehicle_description vehicle_model adi_driver as autoware_driveworks_gmsl_interface autoware_driveworks_interface vlg22c_cam custom_msgs garmin hokuyo javad_navsat_driver kvaser sick_lms5xx memsic_imu microstrain_driver nmea_navsat autoware_pointgrey_drivers sick_ldmrs_description sick_ldmrs_driver sick_ldmrs_laser sick_ldmrs_msgs sick_ldmrs_tools vectacam xsens_driver ymc ds4 ds4_driver ds4_msgs lanelet2 lanelet2_core lanelet2_examples lanelet2_io lanelet2_maps lanelet2_matching lanelet2_projection lanelet2_python lanelet2_routing lanelet2_traffic_rules lanelet2_validation mrt_cmake_modules

ROS Distro
github

Package Summary

Tags No category tags.
Version 1.12.0
License Apache 2
Build type CATKIN
Use RECOMMENDED

Repository Summary

Description autoware.ai perf
Checkout URI https://github.com/is-whale/autoware_learn.git
VCS Type git
VCS Version 1.14
Last Updated 2025-03-14
Dev Status UNKNOWN
Released UNRELEASED
Tags No category tags.
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

darknet image detector

Additional Links

No additional links.

Maintainers

  • Abraham Monrroy

Authors

No additional authors.

Vision Darknet Detect

Autoware package based on Darknet that supports Yolov3 and Yolov2 image detector.

Requirements

  • NVIDIA GPU with CUDA installed
  • Pretrained YOLOv3 or YOLOv2 model on COCO dataset, Models found on the YOLO website.
  • The weights file must be placed in vision_darknet_detect/darknet/data/.

How to launch

  • From a sourced terminal:

    • roslaunch vision_darknet_detect vision_yolo3_detect.launch
    • roslaunch vision_darknet_detect vision_yolo2_detect.launch
  • From Runtime Manager:

Computing Tab -> Detection/ vision_detector -> vision_darknet_detect You can change the config and weights file, as well as other parameters, by clicking [app]

Parameters

Launch file available parameters:

Parameter Type Description
score_threshold Double Detections with a confidence value larger than this value will be displayed. Default 0.5.
nms_threshold Double Non-Maximum suppresion area threshold ratio to merge proposals. Default 0.45.
network_definition_file String Network architecture definition configuration file. Default yolov3.cfg.
pretrained_model_file String Path to pretrained model. Default yolov3.weights.
camera_id String Camera workspace. Default /.
image_src String Image source topic. Default /image_raw.
names_file String Path to pretrained model. Default coco.names.

Subscribed topics

Topic Type Objective
/image_raw sensor_msgs/Image Source image stream to perform detection.
/config/Yolo3 autoware_config_msgs/ConfigSSD Configuration adjustment for threshold.

Published topics

Topic Type Objective
/detection/vision_objects autoware_msgs::DetectedObjectArray Contains the coordinates of the bounding box in image coordinates for detected objects.

Video

Yolo v3 Autoware

CHANGELOG

Changelog for package vision_yolo3_detect

1.11.0 (2019-03-21)

  • Removing CUDA dependencies for Darknet Yolov3 (#1784)

    * Removing CUDA dependencies for Darknet yolov3 If the host machine does not have CUDA, this will build the vision_darknet_detect package based on a pre-built darknet directory (which doesn't require CUDA as there are no CUDA dependencies for yolov3).

    * Update ros/src/computing/perception/detection/vision_detector/packages/vision_darknet_detect/CMakeLists.txt Co-Authored-By: K1504296 <<greytrt@gmail.com>>

  • Fix license notice in corresponding package.xml

  • Initial release of object filter

  • Contributors: Abraham Monrroy, Theodore, amc-nu

1.10.0 (2019-01-17)

  • Fixes for catkin_make
  • [fix] SSD detector, cmake colcon (#1837)
    • Fixes for new colcon script on ssd cuda based node

    • Fixed to RTM and darknet launch files

    • catkin_fix

      • catkin & colcon build successfully
    • reverted back run to devel space (for the time being)
  • Switch to Apache 2 license (develop branch) (#1741)
    • Switch to Apache 2

    * Replace BSD-3 license header with Apache 2 and reassign copyright to the Autoware Foundation.

    • Update license on Python files
    • Update copyright years
    • Add #ifndef/define _POINTS_IMAGE_H_
    • Updated license comment
  • Use colcon as the build tool (#1704)
    • Switch to colcon as the build tool instead of catkin
    • Added cmake-target
    • Added note about the second colcon call
    • Added warning about catkin* scripts being deprecated
    • Fix COLCON_OPTS
    • Added install targets
    • Update Docker image tags
    • Message packages fixes
    • Fix missing dependency
  • Feature/perception visualization cleanup (#1648)
      • Initial commit for visualization package
    • Removal of all visualization messages from perception nodes

    • Visualization dependency removal

    • Launch file modification

      • Fixes to visualization
    • Error on Clustering CPU

    • Reduce verbosity on markers

    • intial commit

      • Changed to 2 spaces indentation
    • Added README

    • Fixed README messages type

    • 2 space indenting

    • ros clang format

    • Publish acceleration and velocity from ukf tracker

    • Remove hardcoded path

    • Updated README

    • updated prototype

    • Prototype update for header and usage

    • Removed unknown label from being reported

    • Updated publishing orientation to match develop

      • Published all the trackers

File truncated at 100 lines see the full file

Dependant Packages

No known dependants.

Launch files

  • launch/vision_yolo2_detect.launch
      • gpu_device_id [default: 0]
      • score_threshold [default: 0.30]
      • nms_threshold [default: 0.45]
      • network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov2.cfg]
      • pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov2.weights]
      • names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
      • camera_id [default: /]
      • image_src [default: /image_raw]
  • launch/vision_yolo3_detect.launch
      • gpu_device_id [default: 0]
      • score_threshold [default: 0.30]
      • nms_threshold [default: 0.30]
      • network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov3.cfg]
      • pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov3.weights]
      • names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
      • camera_id [default: /]
      • image_src [default: /image_raw]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged vision_darknet_detect at Robotics Stack Exchange