Package Summary
Tags | No category tags. |
Version | 1.12.0 |
License | Apache 2 |
Build type | CATKIN |
Use | RECOMMENDED |
Repository Summary
Description | autoware.ai perf |
Checkout URI | https://github.com/is-whale/autoware_learn.git |
VCS Type | git |
VCS Version | 1.14 |
Last Updated | 2025-03-14 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Abraham Monrroy
Authors
Vision Darknet Detect
Autoware package based on Darknet that supports Yolov3 and Yolov2 image detector.
Requirements
- NVIDIA GPU with CUDA installed
- Pretrained YOLOv3 or YOLOv2 model on COCO dataset, Models found on the YOLO website.
- The weights file must be placed in
vision_darknet_detect/darknet/data/
.
How to launch
-
From a sourced terminal:
roslaunch vision_darknet_detect vision_yolo3_detect.launch
roslaunch vision_darknet_detect vision_yolo2_detect.launch
-
From Runtime Manager:
Computing Tab -> Detection/ vision_detector -> vision_darknet_detect
You can change the config and weights file, as well as other parameters, by clicking [app]
Parameters
Launch file available parameters:
Parameter | Type | Description |
---|---|---|
score_threshold |
Double | Detections with a confidence value larger than this value will be displayed. Default 0.5 . |
nms_threshold |
Double | Non-Maximum suppresion area threshold ratio to merge proposals. Default 0.45 . |
network_definition_file |
String | Network architecture definition configuration file. Default yolov3.cfg . |
pretrained_model_file |
String | Path to pretrained model. Default yolov3.weights . |
camera_id |
String | Camera workspace. Default / . |
image_src |
String | Image source topic. Default /image_raw . |
names_file |
String | Path to pretrained model. Default coco.names . |
Subscribed topics
Topic | Type | Objective |
---|---|---|
/image_raw |
sensor_msgs/Image |
Source image stream to perform detection. |
/config/Yolo3 |
autoware_config_msgs/ConfigSSD |
Configuration adjustment for threshold. |
Published topics
Topic | Type | Objective |
---|---|---|
/detection/vision_objects |
autoware_msgs::DetectedObjectArray |
Contains the coordinates of the bounding box in image coordinates for detected objects. |
Video
Changelog for package vision_yolo3_detect
1.11.0 (2019-03-21)
-
Removing CUDA dependencies for Darknet Yolov3 (#1784)
* Removing CUDA dependencies for Darknet yolov3 If the host machine does not have CUDA, this will build the vision_darknet_detect package based on a pre-built darknet directory (which doesn't require CUDA as there are no CUDA dependencies for yolov3).
* Update ros/src/computing/perception/detection/vision_detector/packages/vision_darknet_detect/CMakeLists.txt Co-Authored-By: K1504296 <<greytrt@gmail.com>>
-
Fix license notice in corresponding package.xml
-
Initial release of object filter
-
Contributors: Abraham Monrroy, Theodore, amc-nu
1.10.0 (2019-01-17)
- Fixes for catkin_make
- [fix] SSD detector, cmake colcon
(#1837)
-
Fixes for new colcon script on ssd cuda based node
-
Fixed to RTM and darknet launch files
-
catkin_fix
-
- catkin & colcon build successfully
- reverted back run to devel space (for the time being)
-
- Switch to Apache 2 license (develop branch)
(#1741)
- Switch to Apache 2
* Replace BSD-3 license header with Apache 2 and reassign copyright to the Autoware Foundation.
- Update license on Python files
- Update copyright years
- Add #ifndef/define _POINTS_IMAGE_H_
- Updated license comment
- Use colcon as the build tool
(#1704)
- Switch to colcon as the build tool instead of catkin
- Added cmake-target
- Added note about the second colcon call
- Added warning about catkin* scripts being deprecated
- Fix COLCON_OPTS
- Added install targets
- Update Docker image tags
- Message packages fixes
- Fix missing dependency
- Feature/perception visualization cleanup
(#1648)
-
- Initial commit for visualization package
-
Removal of all visualization messages from perception nodes
-
Visualization dependency removal
-
Launch file modification
-
- Fixes to visualization
-
Error on Clustering CPU
-
Reduce verbosity on markers
-
intial commit
-
- Changed to 2 spaces indentation
-
Added README
-
Fixed README messages type
-
2 space indenting
-
ros clang format
-
Publish acceleration and velocity from ukf tracker
-
Remove hardcoded path
-
Updated README
-
updated prototype
-
Prototype update for header and usage
-
Removed unknown label from being reported
-
Updated publishing orientation to match develop
-
- Published all the trackers
-
File truncated at 100 lines see the full file
Package Dependencies
Deps | Name |
---|---|
autoware_build_flags | |
catkin | |
autoware_config_msgs | |
autoware_msgs | |
cv_bridge | |
image_transport | |
roscpp | |
sensor_msgs | |
std_msgs |
System Dependencies
Dependant Packages
Launch files
- launch/vision_yolo2_detect.launch
-
- gpu_device_id [default: 0]
- score_threshold [default: 0.30]
- nms_threshold [default: 0.45]
- network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov2.cfg]
- pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov2.weights]
- names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
- camera_id [default: /]
- image_src [default: /image_raw]
- launch/vision_yolo3_detect.launch
-
- gpu_device_id [default: 0]
- score_threshold [default: 0.30]
- nms_threshold [default: 0.30]
- network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov3.cfg]
- pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov3.weights]
- names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
- camera_id [default: /]
- image_src [default: /image_raw]
Messages
Services
Plugins
Recent questions tagged vision_darknet_detect at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 1.12.0 |
License | Apache 2 |
Build type | CATKIN |
Use | RECOMMENDED |
Repository Summary
Description | autoware.ai perf |
Checkout URI | https://github.com/is-whale/autoware_learn.git |
VCS Type | git |
VCS Version | 1.14 |
Last Updated | 2025-03-14 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Abraham Monrroy
Authors
Vision Darknet Detect
Autoware package based on Darknet that supports Yolov3 and Yolov2 image detector.
Requirements
- NVIDIA GPU with CUDA installed
- Pretrained YOLOv3 or YOLOv2 model on COCO dataset, Models found on the YOLO website.
- The weights file must be placed in
vision_darknet_detect/darknet/data/
.
How to launch
-
From a sourced terminal:
roslaunch vision_darknet_detect vision_yolo3_detect.launch
roslaunch vision_darknet_detect vision_yolo2_detect.launch
-
From Runtime Manager:
Computing Tab -> Detection/ vision_detector -> vision_darknet_detect
You can change the config and weights file, as well as other parameters, by clicking [app]
Parameters
Launch file available parameters:
Parameter | Type | Description |
---|---|---|
score_threshold |
Double | Detections with a confidence value larger than this value will be displayed. Default 0.5 . |
nms_threshold |
Double | Non-Maximum suppresion area threshold ratio to merge proposals. Default 0.45 . |
network_definition_file |
String | Network architecture definition configuration file. Default yolov3.cfg . |
pretrained_model_file |
String | Path to pretrained model. Default yolov3.weights . |
camera_id |
String | Camera workspace. Default / . |
image_src |
String | Image source topic. Default /image_raw . |
names_file |
String | Path to pretrained model. Default coco.names . |
Subscribed topics
Topic | Type | Objective |
---|---|---|
/image_raw |
sensor_msgs/Image |
Source image stream to perform detection. |
/config/Yolo3 |
autoware_config_msgs/ConfigSSD |
Configuration adjustment for threshold. |
Published topics
Topic | Type | Objective |
---|---|---|
/detection/vision_objects |
autoware_msgs::DetectedObjectArray |
Contains the coordinates of the bounding box in image coordinates for detected objects. |
Video
Changelog for package vision_yolo3_detect
1.11.0 (2019-03-21)
-
Removing CUDA dependencies for Darknet Yolov3 (#1784)
* Removing CUDA dependencies for Darknet yolov3 If the host machine does not have CUDA, this will build the vision_darknet_detect package based on a pre-built darknet directory (which doesn't require CUDA as there are no CUDA dependencies for yolov3).
* Update ros/src/computing/perception/detection/vision_detector/packages/vision_darknet_detect/CMakeLists.txt Co-Authored-By: K1504296 <<greytrt@gmail.com>>
-
Fix license notice in corresponding package.xml
-
Initial release of object filter
-
Contributors: Abraham Monrroy, Theodore, amc-nu
1.10.0 (2019-01-17)
- Fixes for catkin_make
- [fix] SSD detector, cmake colcon
(#1837)
-
Fixes for new colcon script on ssd cuda based node
-
Fixed to RTM and darknet launch files
-
catkin_fix
-
- catkin & colcon build successfully
- reverted back run to devel space (for the time being)
-
- Switch to Apache 2 license (develop branch)
(#1741)
- Switch to Apache 2
* Replace BSD-3 license header with Apache 2 and reassign copyright to the Autoware Foundation.
- Update license on Python files
- Update copyright years
- Add #ifndef/define _POINTS_IMAGE_H_
- Updated license comment
- Use colcon as the build tool
(#1704)
- Switch to colcon as the build tool instead of catkin
- Added cmake-target
- Added note about the second colcon call
- Added warning about catkin* scripts being deprecated
- Fix COLCON_OPTS
- Added install targets
- Update Docker image tags
- Message packages fixes
- Fix missing dependency
- Feature/perception visualization cleanup
(#1648)
-
- Initial commit for visualization package
-
Removal of all visualization messages from perception nodes
-
Visualization dependency removal
-
Launch file modification
-
- Fixes to visualization
-
Error on Clustering CPU
-
Reduce verbosity on markers
-
intial commit
-
- Changed to 2 spaces indentation
-
Added README
-
Fixed README messages type
-
2 space indenting
-
ros clang format
-
Publish acceleration and velocity from ukf tracker
-
Remove hardcoded path
-
Updated README
-
updated prototype
-
Prototype update for header and usage
-
Removed unknown label from being reported
-
Updated publishing orientation to match develop
-
- Published all the trackers
-
File truncated at 100 lines see the full file
Package Dependencies
Deps | Name |
---|---|
autoware_build_flags | |
catkin | |
autoware_config_msgs | |
autoware_msgs | |
cv_bridge | |
image_transport | |
roscpp | |
sensor_msgs | |
std_msgs |
System Dependencies
Dependant Packages
Launch files
- launch/vision_yolo2_detect.launch
-
- gpu_device_id [default: 0]
- score_threshold [default: 0.30]
- nms_threshold [default: 0.45]
- network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov2.cfg]
- pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov2.weights]
- names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
- camera_id [default: /]
- image_src [default: /image_raw]
- launch/vision_yolo3_detect.launch
-
- gpu_device_id [default: 0]
- score_threshold [default: 0.30]
- nms_threshold [default: 0.30]
- network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov3.cfg]
- pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov3.weights]
- names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
- camera_id [default: /]
- image_src [default: /image_raw]
Messages
Services
Plugins
Recent questions tagged vision_darknet_detect at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 1.12.0 |
License | Apache 2 |
Build type | CATKIN |
Use | RECOMMENDED |
Repository Summary
Description | autoware.ai perf |
Checkout URI | https://github.com/is-whale/autoware_learn.git |
VCS Type | git |
VCS Version | 1.14 |
Last Updated | 2025-03-14 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Abraham Monrroy
Authors
Vision Darknet Detect
Autoware package based on Darknet that supports Yolov3 and Yolov2 image detector.
Requirements
- NVIDIA GPU with CUDA installed
- Pretrained YOLOv3 or YOLOv2 model on COCO dataset, Models found on the YOLO website.
- The weights file must be placed in
vision_darknet_detect/darknet/data/
.
How to launch
-
From a sourced terminal:
roslaunch vision_darknet_detect vision_yolo3_detect.launch
roslaunch vision_darknet_detect vision_yolo2_detect.launch
-
From Runtime Manager:
Computing Tab -> Detection/ vision_detector -> vision_darknet_detect
You can change the config and weights file, as well as other parameters, by clicking [app]
Parameters
Launch file available parameters:
Parameter | Type | Description |
---|---|---|
score_threshold |
Double | Detections with a confidence value larger than this value will be displayed. Default 0.5 . |
nms_threshold |
Double | Non-Maximum suppresion area threshold ratio to merge proposals. Default 0.45 . |
network_definition_file |
String | Network architecture definition configuration file. Default yolov3.cfg . |
pretrained_model_file |
String | Path to pretrained model. Default yolov3.weights . |
camera_id |
String | Camera workspace. Default / . |
image_src |
String | Image source topic. Default /image_raw . |
names_file |
String | Path to pretrained model. Default coco.names . |
Subscribed topics
Topic | Type | Objective |
---|---|---|
/image_raw |
sensor_msgs/Image |
Source image stream to perform detection. |
/config/Yolo3 |
autoware_config_msgs/ConfigSSD |
Configuration adjustment for threshold. |
Published topics
Topic | Type | Objective |
---|---|---|
/detection/vision_objects |
autoware_msgs::DetectedObjectArray |
Contains the coordinates of the bounding box in image coordinates for detected objects. |
Video
Changelog for package vision_yolo3_detect
1.11.0 (2019-03-21)
-
Removing CUDA dependencies for Darknet Yolov3 (#1784)
* Removing CUDA dependencies for Darknet yolov3 If the host machine does not have CUDA, this will build the vision_darknet_detect package based on a pre-built darknet directory (which doesn't require CUDA as there are no CUDA dependencies for yolov3).
* Update ros/src/computing/perception/detection/vision_detector/packages/vision_darknet_detect/CMakeLists.txt Co-Authored-By: K1504296 <<greytrt@gmail.com>>
-
Fix license notice in corresponding package.xml
-
Initial release of object filter
-
Contributors: Abraham Monrroy, Theodore, amc-nu
1.10.0 (2019-01-17)
- Fixes for catkin_make
- [fix] SSD detector, cmake colcon
(#1837)
-
Fixes for new colcon script on ssd cuda based node
-
Fixed to RTM and darknet launch files
-
catkin_fix
-
- catkin & colcon build successfully
- reverted back run to devel space (for the time being)
-
- Switch to Apache 2 license (develop branch)
(#1741)
- Switch to Apache 2
* Replace BSD-3 license header with Apache 2 and reassign copyright to the Autoware Foundation.
- Update license on Python files
- Update copyright years
- Add #ifndef/define _POINTS_IMAGE_H_
- Updated license comment
- Use colcon as the build tool
(#1704)
- Switch to colcon as the build tool instead of catkin
- Added cmake-target
- Added note about the second colcon call
- Added warning about catkin* scripts being deprecated
- Fix COLCON_OPTS
- Added install targets
- Update Docker image tags
- Message packages fixes
- Fix missing dependency
- Feature/perception visualization cleanup
(#1648)
-
- Initial commit for visualization package
-
Removal of all visualization messages from perception nodes
-
Visualization dependency removal
-
Launch file modification
-
- Fixes to visualization
-
Error on Clustering CPU
-
Reduce verbosity on markers
-
intial commit
-
- Changed to 2 spaces indentation
-
Added README
-
Fixed README messages type
-
2 space indenting
-
ros clang format
-
Publish acceleration and velocity from ukf tracker
-
Remove hardcoded path
-
Updated README
-
updated prototype
-
Prototype update for header and usage
-
Removed unknown label from being reported
-
Updated publishing orientation to match develop
-
- Published all the trackers
-
File truncated at 100 lines see the full file
Package Dependencies
Deps | Name |
---|---|
autoware_build_flags | |
catkin | |
autoware_config_msgs | |
autoware_msgs | |
cv_bridge | |
image_transport | |
roscpp | |
sensor_msgs | |
std_msgs |
System Dependencies
Dependant Packages
Launch files
- launch/vision_yolo2_detect.launch
-
- gpu_device_id [default: 0]
- score_threshold [default: 0.30]
- nms_threshold [default: 0.45]
- network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov2.cfg]
- pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov2.weights]
- names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
- camera_id [default: /]
- image_src [default: /image_raw]
- launch/vision_yolo3_detect.launch
-
- gpu_device_id [default: 0]
- score_threshold [default: 0.30]
- nms_threshold [default: 0.30]
- network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov3.cfg]
- pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov3.weights]
- names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
- camera_id [default: /]
- image_src [default: /image_raw]
Messages
Services
Plugins
Recent questions tagged vision_darknet_detect at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 1.12.0 |
License | Apache 2 |
Build type | CATKIN |
Use | RECOMMENDED |
Repository Summary
Description | autoware.ai perf |
Checkout URI | https://github.com/is-whale/autoware_learn.git |
VCS Type | git |
VCS Version | 1.14 |
Last Updated | 2025-03-14 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Abraham Monrroy
Authors
Vision Darknet Detect
Autoware package based on Darknet that supports Yolov3 and Yolov2 image detector.
Requirements
- NVIDIA GPU with CUDA installed
- Pretrained YOLOv3 or YOLOv2 model on COCO dataset, Models found on the YOLO website.
- The weights file must be placed in
vision_darknet_detect/darknet/data/
.
How to launch
-
From a sourced terminal:
roslaunch vision_darknet_detect vision_yolo3_detect.launch
roslaunch vision_darknet_detect vision_yolo2_detect.launch
-
From Runtime Manager:
Computing Tab -> Detection/ vision_detector -> vision_darknet_detect
You can change the config and weights file, as well as other parameters, by clicking [app]
Parameters
Launch file available parameters:
Parameter | Type | Description |
---|---|---|
score_threshold |
Double | Detections with a confidence value larger than this value will be displayed. Default 0.5 . |
nms_threshold |
Double | Non-Maximum suppresion area threshold ratio to merge proposals. Default 0.45 . |
network_definition_file |
String | Network architecture definition configuration file. Default yolov3.cfg . |
pretrained_model_file |
String | Path to pretrained model. Default yolov3.weights . |
camera_id |
String | Camera workspace. Default / . |
image_src |
String | Image source topic. Default /image_raw . |
names_file |
String | Path to pretrained model. Default coco.names . |
Subscribed topics
Topic | Type | Objective |
---|---|---|
/image_raw |
sensor_msgs/Image |
Source image stream to perform detection. |
/config/Yolo3 |
autoware_config_msgs/ConfigSSD |
Configuration adjustment for threshold. |
Published topics
Topic | Type | Objective |
---|---|---|
/detection/vision_objects |
autoware_msgs::DetectedObjectArray |
Contains the coordinates of the bounding box in image coordinates for detected objects. |
Video
Changelog for package vision_yolo3_detect
1.11.0 (2019-03-21)
-
Removing CUDA dependencies for Darknet Yolov3 (#1784)
* Removing CUDA dependencies for Darknet yolov3 If the host machine does not have CUDA, this will build the vision_darknet_detect package based on a pre-built darknet directory (which doesn't require CUDA as there are no CUDA dependencies for yolov3).
* Update ros/src/computing/perception/detection/vision_detector/packages/vision_darknet_detect/CMakeLists.txt Co-Authored-By: K1504296 <<greytrt@gmail.com>>
-
Fix license notice in corresponding package.xml
-
Initial release of object filter
-
Contributors: Abraham Monrroy, Theodore, amc-nu
1.10.0 (2019-01-17)
- Fixes for catkin_make
- [fix] SSD detector, cmake colcon
(#1837)
-
Fixes for new colcon script on ssd cuda based node
-
Fixed to RTM and darknet launch files
-
catkin_fix
-
- catkin & colcon build successfully
- reverted back run to devel space (for the time being)
-
- Switch to Apache 2 license (develop branch)
(#1741)
- Switch to Apache 2
* Replace BSD-3 license header with Apache 2 and reassign copyright to the Autoware Foundation.
- Update license on Python files
- Update copyright years
- Add #ifndef/define _POINTS_IMAGE_H_
- Updated license comment
- Use colcon as the build tool
(#1704)
- Switch to colcon as the build tool instead of catkin
- Added cmake-target
- Added note about the second colcon call
- Added warning about catkin* scripts being deprecated
- Fix COLCON_OPTS
- Added install targets
- Update Docker image tags
- Message packages fixes
- Fix missing dependency
- Feature/perception visualization cleanup
(#1648)
-
- Initial commit for visualization package
-
Removal of all visualization messages from perception nodes
-
Visualization dependency removal
-
Launch file modification
-
- Fixes to visualization
-
Error on Clustering CPU
-
Reduce verbosity on markers
-
intial commit
-
- Changed to 2 spaces indentation
-
Added README
-
Fixed README messages type
-
2 space indenting
-
ros clang format
-
Publish acceleration and velocity from ukf tracker
-
Remove hardcoded path
-
Updated README
-
updated prototype
-
Prototype update for header and usage
-
Removed unknown label from being reported
-
Updated publishing orientation to match develop
-
- Published all the trackers
-
File truncated at 100 lines see the full file
Package Dependencies
Deps | Name |
---|---|
autoware_build_flags | |
catkin | |
autoware_config_msgs | |
autoware_msgs | |
cv_bridge | |
image_transport | |
roscpp | |
sensor_msgs | |
std_msgs |
System Dependencies
Dependant Packages
Launch files
- launch/vision_yolo2_detect.launch
-
- gpu_device_id [default: 0]
- score_threshold [default: 0.30]
- nms_threshold [default: 0.45]
- network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov2.cfg]
- pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov2.weights]
- names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
- camera_id [default: /]
- image_src [default: /image_raw]
- launch/vision_yolo3_detect.launch
-
- gpu_device_id [default: 0]
- score_threshold [default: 0.30]
- nms_threshold [default: 0.30]
- network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov3.cfg]
- pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov3.weights]
- names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
- camera_id [default: /]
- image_src [default: /image_raw]
Messages
Services
Plugins
Recent questions tagged vision_darknet_detect at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 1.12.0 |
License | Apache 2 |
Build type | CATKIN |
Use | RECOMMENDED |
Repository Summary
Description | autoware.ai perf |
Checkout URI | https://github.com/is-whale/autoware_learn.git |
VCS Type | git |
VCS Version | 1.14 |
Last Updated | 2025-03-14 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Abraham Monrroy
Authors
Vision Darknet Detect
Autoware package based on Darknet that supports Yolov3 and Yolov2 image detector.
Requirements
- NVIDIA GPU with CUDA installed
- Pretrained YOLOv3 or YOLOv2 model on COCO dataset, Models found on the YOLO website.
- The weights file must be placed in
vision_darknet_detect/darknet/data/
.
How to launch
-
From a sourced terminal:
roslaunch vision_darknet_detect vision_yolo3_detect.launch
roslaunch vision_darknet_detect vision_yolo2_detect.launch
-
From Runtime Manager:
Computing Tab -> Detection/ vision_detector -> vision_darknet_detect
You can change the config and weights file, as well as other parameters, by clicking [app]
Parameters
Launch file available parameters:
Parameter | Type | Description |
---|---|---|
score_threshold |
Double | Detections with a confidence value larger than this value will be displayed. Default 0.5 . |
nms_threshold |
Double | Non-Maximum suppresion area threshold ratio to merge proposals. Default 0.45 . |
network_definition_file |
String | Network architecture definition configuration file. Default yolov3.cfg . |
pretrained_model_file |
String | Path to pretrained model. Default yolov3.weights . |
camera_id |
String | Camera workspace. Default / . |
image_src |
String | Image source topic. Default /image_raw . |
names_file |
String | Path to pretrained model. Default coco.names . |
Subscribed topics
Topic | Type | Objective |
---|---|---|
/image_raw |
sensor_msgs/Image |
Source image stream to perform detection. |
/config/Yolo3 |
autoware_config_msgs/ConfigSSD |
Configuration adjustment for threshold. |
Published topics
Topic | Type | Objective |
---|---|---|
/detection/vision_objects |
autoware_msgs::DetectedObjectArray |
Contains the coordinates of the bounding box in image coordinates for detected objects. |
Video
Changelog for package vision_yolo3_detect
1.11.0 (2019-03-21)
-
Removing CUDA dependencies for Darknet Yolov3 (#1784)
* Removing CUDA dependencies for Darknet yolov3 If the host machine does not have CUDA, this will build the vision_darknet_detect package based on a pre-built darknet directory (which doesn't require CUDA as there are no CUDA dependencies for yolov3).
* Update ros/src/computing/perception/detection/vision_detector/packages/vision_darknet_detect/CMakeLists.txt Co-Authored-By: K1504296 <<greytrt@gmail.com>>
-
Fix license notice in corresponding package.xml
-
Initial release of object filter
-
Contributors: Abraham Monrroy, Theodore, amc-nu
1.10.0 (2019-01-17)
- Fixes for catkin_make
- [fix] SSD detector, cmake colcon
(#1837)
-
Fixes for new colcon script on ssd cuda based node
-
Fixed to RTM and darknet launch files
-
catkin_fix
-
- catkin & colcon build successfully
- reverted back run to devel space (for the time being)
-
- Switch to Apache 2 license (develop branch)
(#1741)
- Switch to Apache 2
* Replace BSD-3 license header with Apache 2 and reassign copyright to the Autoware Foundation.
- Update license on Python files
- Update copyright years
- Add #ifndef/define _POINTS_IMAGE_H_
- Updated license comment
- Use colcon as the build tool
(#1704)
- Switch to colcon as the build tool instead of catkin
- Added cmake-target
- Added note about the second colcon call
- Added warning about catkin* scripts being deprecated
- Fix COLCON_OPTS
- Added install targets
- Update Docker image tags
- Message packages fixes
- Fix missing dependency
- Feature/perception visualization cleanup
(#1648)
-
- Initial commit for visualization package
-
Removal of all visualization messages from perception nodes
-
Visualization dependency removal
-
Launch file modification
-
- Fixes to visualization
-
Error on Clustering CPU
-
Reduce verbosity on markers
-
intial commit
-
- Changed to 2 spaces indentation
-
Added README
-
Fixed README messages type
-
2 space indenting
-
ros clang format
-
Publish acceleration and velocity from ukf tracker
-
Remove hardcoded path
-
Updated README
-
updated prototype
-
Prototype update for header and usage
-
Removed unknown label from being reported
-
Updated publishing orientation to match develop
-
- Published all the trackers
-
File truncated at 100 lines see the full file
Package Dependencies
Deps | Name |
---|---|
autoware_build_flags | |
catkin | |
autoware_config_msgs | |
autoware_msgs | |
cv_bridge | |
image_transport | |
roscpp | |
sensor_msgs | |
std_msgs |
System Dependencies
Dependant Packages
Launch files
- launch/vision_yolo2_detect.launch
-
- gpu_device_id [default: 0]
- score_threshold [default: 0.30]
- nms_threshold [default: 0.45]
- network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov2.cfg]
- pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov2.weights]
- names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
- camera_id [default: /]
- image_src [default: /image_raw]
- launch/vision_yolo3_detect.launch
-
- gpu_device_id [default: 0]
- score_threshold [default: 0.30]
- nms_threshold [default: 0.30]
- network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov3.cfg]
- pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov3.weights]
- names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
- camera_id [default: /]
- image_src [default: /image_raw]
Messages
Services
Plugins
Recent questions tagged vision_darknet_detect at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 1.12.0 |
License | Apache 2 |
Build type | CATKIN |
Use | RECOMMENDED |
Repository Summary
Description | autoware.ai perf |
Checkout URI | https://github.com/is-whale/autoware_learn.git |
VCS Type | git |
VCS Version | 1.14 |
Last Updated | 2025-03-14 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Abraham Monrroy
Authors
Vision Darknet Detect
Autoware package based on Darknet that supports Yolov3 and Yolov2 image detector.
Requirements
- NVIDIA GPU with CUDA installed
- Pretrained YOLOv3 or YOLOv2 model on COCO dataset, Models found on the YOLO website.
- The weights file must be placed in
vision_darknet_detect/darknet/data/
.
How to launch
-
From a sourced terminal:
roslaunch vision_darknet_detect vision_yolo3_detect.launch
roslaunch vision_darknet_detect vision_yolo2_detect.launch
-
From Runtime Manager:
Computing Tab -> Detection/ vision_detector -> vision_darknet_detect
You can change the config and weights file, as well as other parameters, by clicking [app]
Parameters
Launch file available parameters:
Parameter | Type | Description |
---|---|---|
score_threshold |
Double | Detections with a confidence value larger than this value will be displayed. Default 0.5 . |
nms_threshold |
Double | Non-Maximum suppresion area threshold ratio to merge proposals. Default 0.45 . |
network_definition_file |
String | Network architecture definition configuration file. Default yolov3.cfg . |
pretrained_model_file |
String | Path to pretrained model. Default yolov3.weights . |
camera_id |
String | Camera workspace. Default / . |
image_src |
String | Image source topic. Default /image_raw . |
names_file |
String | Path to pretrained model. Default coco.names . |
Subscribed topics
Topic | Type | Objective |
---|---|---|
/image_raw |
sensor_msgs/Image |
Source image stream to perform detection. |
/config/Yolo3 |
autoware_config_msgs/ConfigSSD |
Configuration adjustment for threshold. |
Published topics
Topic | Type | Objective |
---|---|---|
/detection/vision_objects |
autoware_msgs::DetectedObjectArray |
Contains the coordinates of the bounding box in image coordinates for detected objects. |
Video
Changelog for package vision_yolo3_detect
1.11.0 (2019-03-21)
-
Removing CUDA dependencies for Darknet Yolov3 (#1784)
* Removing CUDA dependencies for Darknet yolov3 If the host machine does not have CUDA, this will build the vision_darknet_detect package based on a pre-built darknet directory (which doesn't require CUDA as there are no CUDA dependencies for yolov3).
* Update ros/src/computing/perception/detection/vision_detector/packages/vision_darknet_detect/CMakeLists.txt Co-Authored-By: K1504296 <<greytrt@gmail.com>>
-
Fix license notice in corresponding package.xml
-
Initial release of object filter
-
Contributors: Abraham Monrroy, Theodore, amc-nu
1.10.0 (2019-01-17)
- Fixes for catkin_make
- [fix] SSD detector, cmake colcon
(#1837)
-
Fixes for new colcon script on ssd cuda based node
-
Fixed to RTM and darknet launch files
-
catkin_fix
-
- catkin & colcon build successfully
- reverted back run to devel space (for the time being)
-
- Switch to Apache 2 license (develop branch)
(#1741)
- Switch to Apache 2
* Replace BSD-3 license header with Apache 2 and reassign copyright to the Autoware Foundation.
- Update license on Python files
- Update copyright years
- Add #ifndef/define _POINTS_IMAGE_H_
- Updated license comment
- Use colcon as the build tool
(#1704)
- Switch to colcon as the build tool instead of catkin
- Added cmake-target
- Added note about the second colcon call
- Added warning about catkin* scripts being deprecated
- Fix COLCON_OPTS
- Added install targets
- Update Docker image tags
- Message packages fixes
- Fix missing dependency
- Feature/perception visualization cleanup
(#1648)
-
- Initial commit for visualization package
-
Removal of all visualization messages from perception nodes
-
Visualization dependency removal
-
Launch file modification
-
- Fixes to visualization
-
Error on Clustering CPU
-
Reduce verbosity on markers
-
intial commit
-
- Changed to 2 spaces indentation
-
Added README
-
Fixed README messages type
-
2 space indenting
-
ros clang format
-
Publish acceleration and velocity from ukf tracker
-
Remove hardcoded path
-
Updated README
-
updated prototype
-
Prototype update for header and usage
-
Removed unknown label from being reported
-
Updated publishing orientation to match develop
-
- Published all the trackers
-
File truncated at 100 lines see the full file
Package Dependencies
Deps | Name |
---|---|
autoware_build_flags | |
catkin | |
autoware_config_msgs | |
autoware_msgs | |
cv_bridge | |
image_transport | |
roscpp | |
sensor_msgs | |
std_msgs |
System Dependencies
Dependant Packages
Launch files
- launch/vision_yolo2_detect.launch
-
- gpu_device_id [default: 0]
- score_threshold [default: 0.30]
- nms_threshold [default: 0.45]
- network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov2.cfg]
- pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov2.weights]
- names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
- camera_id [default: /]
- image_src [default: /image_raw]
- launch/vision_yolo3_detect.launch
-
- gpu_device_id [default: 0]
- score_threshold [default: 0.30]
- nms_threshold [default: 0.30]
- network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov3.cfg]
- pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov3.weights]
- names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
- camera_id [default: /]
- image_src [default: /image_raw]
Messages
Services
Plugins
Recent questions tagged vision_darknet_detect at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 1.12.0 |
License | Apache 2 |
Build type | CATKIN |
Use | RECOMMENDED |
Repository Summary
Description | autoware.ai perf |
Checkout URI | https://github.com/is-whale/autoware_learn.git |
VCS Type | git |
VCS Version | 1.14 |
Last Updated | 2025-03-14 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Abraham Monrroy
Authors
Vision Darknet Detect
Autoware package based on Darknet that supports Yolov3 and Yolov2 image detector.
Requirements
- NVIDIA GPU with CUDA installed
- Pretrained YOLOv3 or YOLOv2 model on COCO dataset, Models found on the YOLO website.
- The weights file must be placed in
vision_darknet_detect/darknet/data/
.
How to launch
-
From a sourced terminal:
roslaunch vision_darknet_detect vision_yolo3_detect.launch
roslaunch vision_darknet_detect vision_yolo2_detect.launch
-
From Runtime Manager:
Computing Tab -> Detection/ vision_detector -> vision_darknet_detect
You can change the config and weights file, as well as other parameters, by clicking [app]
Parameters
Launch file available parameters:
Parameter | Type | Description |
---|---|---|
score_threshold |
Double | Detections with a confidence value larger than this value will be displayed. Default 0.5 . |
nms_threshold |
Double | Non-Maximum suppresion area threshold ratio to merge proposals. Default 0.45 . |
network_definition_file |
String | Network architecture definition configuration file. Default yolov3.cfg . |
pretrained_model_file |
String | Path to pretrained model. Default yolov3.weights . |
camera_id |
String | Camera workspace. Default / . |
image_src |
String | Image source topic. Default /image_raw . |
names_file |
String | Path to pretrained model. Default coco.names . |
Subscribed topics
Topic | Type | Objective |
---|---|---|
/image_raw |
sensor_msgs/Image |
Source image stream to perform detection. |
/config/Yolo3 |
autoware_config_msgs/ConfigSSD |
Configuration adjustment for threshold. |
Published topics
Topic | Type | Objective |
---|---|---|
/detection/vision_objects |
autoware_msgs::DetectedObjectArray |
Contains the coordinates of the bounding box in image coordinates for detected objects. |
Video
Changelog for package vision_yolo3_detect
1.11.0 (2019-03-21)
-
Removing CUDA dependencies for Darknet Yolov3 (#1784)
* Removing CUDA dependencies for Darknet yolov3 If the host machine does not have CUDA, this will build the vision_darknet_detect package based on a pre-built darknet directory (which doesn't require CUDA as there are no CUDA dependencies for yolov3).
* Update ros/src/computing/perception/detection/vision_detector/packages/vision_darknet_detect/CMakeLists.txt Co-Authored-By: K1504296 <<greytrt@gmail.com>>
-
Fix license notice in corresponding package.xml
-
Initial release of object filter
-
Contributors: Abraham Monrroy, Theodore, amc-nu
1.10.0 (2019-01-17)
- Fixes for catkin_make
- [fix] SSD detector, cmake colcon
(#1837)
-
Fixes for new colcon script on ssd cuda based node
-
Fixed to RTM and darknet launch files
-
catkin_fix
-
- catkin & colcon build successfully
- reverted back run to devel space (for the time being)
-
- Switch to Apache 2 license (develop branch)
(#1741)
- Switch to Apache 2
* Replace BSD-3 license header with Apache 2 and reassign copyright to the Autoware Foundation.
- Update license on Python files
- Update copyright years
- Add #ifndef/define _POINTS_IMAGE_H_
- Updated license comment
- Use colcon as the build tool
(#1704)
- Switch to colcon as the build tool instead of catkin
- Added cmake-target
- Added note about the second colcon call
- Added warning about catkin* scripts being deprecated
- Fix COLCON_OPTS
- Added install targets
- Update Docker image tags
- Message packages fixes
- Fix missing dependency
- Feature/perception visualization cleanup
(#1648)
-
- Initial commit for visualization package
-
Removal of all visualization messages from perception nodes
-
Visualization dependency removal
-
Launch file modification
-
- Fixes to visualization
-
Error on Clustering CPU
-
Reduce verbosity on markers
-
intial commit
-
- Changed to 2 spaces indentation
-
Added README
-
Fixed README messages type
-
2 space indenting
-
ros clang format
-
Publish acceleration and velocity from ukf tracker
-
Remove hardcoded path
-
Updated README
-
updated prototype
-
Prototype update for header and usage
-
Removed unknown label from being reported
-
Updated publishing orientation to match develop
-
- Published all the trackers
-
File truncated at 100 lines see the full file
Package Dependencies
Deps | Name |
---|---|
autoware_build_flags | |
catkin | |
autoware_config_msgs | |
autoware_msgs | |
cv_bridge | |
image_transport | |
roscpp | |
sensor_msgs | |
std_msgs |
System Dependencies
Dependant Packages
Launch files
- launch/vision_yolo2_detect.launch
-
- gpu_device_id [default: 0]
- score_threshold [default: 0.30]
- nms_threshold [default: 0.45]
- network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov2.cfg]
- pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov2.weights]
- names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
- camera_id [default: /]
- image_src [default: /image_raw]
- launch/vision_yolo3_detect.launch
-
- gpu_device_id [default: 0]
- score_threshold [default: 0.30]
- nms_threshold [default: 0.30]
- network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov3.cfg]
- pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov3.weights]
- names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
- camera_id [default: /]
- image_src [default: /image_raw]
Messages
Services
Plugins
Recent questions tagged vision_darknet_detect at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 1.12.0 |
License | Apache 2 |
Build type | CATKIN |
Use | RECOMMENDED |
Repository Summary
Description | autoware.ai perf |
Checkout URI | https://github.com/is-whale/autoware_learn.git |
VCS Type | git |
VCS Version | 1.14 |
Last Updated | 2025-03-14 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Abraham Monrroy
Authors
Vision Darknet Detect
Autoware package based on Darknet that supports Yolov3 and Yolov2 image detector.
Requirements
- NVIDIA GPU with CUDA installed
- Pretrained YOLOv3 or YOLOv2 model on COCO dataset, Models found on the YOLO website.
- The weights file must be placed in
vision_darknet_detect/darknet/data/
.
How to launch
-
From a sourced terminal:
roslaunch vision_darknet_detect vision_yolo3_detect.launch
roslaunch vision_darknet_detect vision_yolo2_detect.launch
-
From Runtime Manager:
Computing Tab -> Detection/ vision_detector -> vision_darknet_detect
You can change the config and weights file, as well as other parameters, by clicking [app]
Parameters
Launch file available parameters:
Parameter | Type | Description |
---|---|---|
score_threshold |
Double | Detections with a confidence value larger than this value will be displayed. Default 0.5 . |
nms_threshold |
Double | Non-Maximum suppresion area threshold ratio to merge proposals. Default 0.45 . |
network_definition_file |
String | Network architecture definition configuration file. Default yolov3.cfg . |
pretrained_model_file |
String | Path to pretrained model. Default yolov3.weights . |
camera_id |
String | Camera workspace. Default / . |
image_src |
String | Image source topic. Default /image_raw . |
names_file |
String | Path to pretrained model. Default coco.names . |
Subscribed topics
Topic | Type | Objective |
---|---|---|
/image_raw |
sensor_msgs/Image |
Source image stream to perform detection. |
/config/Yolo3 |
autoware_config_msgs/ConfigSSD |
Configuration adjustment for threshold. |
Published topics
Topic | Type | Objective |
---|---|---|
/detection/vision_objects |
autoware_msgs::DetectedObjectArray |
Contains the coordinates of the bounding box in image coordinates for detected objects. |
Video
Changelog for package vision_yolo3_detect
1.11.0 (2019-03-21)
-
Removing CUDA dependencies for Darknet Yolov3 (#1784)
* Removing CUDA dependencies for Darknet yolov3 If the host machine does not have CUDA, this will build the vision_darknet_detect package based on a pre-built darknet directory (which doesn't require CUDA as there are no CUDA dependencies for yolov3).
* Update ros/src/computing/perception/detection/vision_detector/packages/vision_darknet_detect/CMakeLists.txt Co-Authored-By: K1504296 <<greytrt@gmail.com>>
-
Fix license notice in corresponding package.xml
-
Initial release of object filter
-
Contributors: Abraham Monrroy, Theodore, amc-nu
1.10.0 (2019-01-17)
- Fixes for catkin_make
- [fix] SSD detector, cmake colcon
(#1837)
-
Fixes for new colcon script on ssd cuda based node
-
Fixed to RTM and darknet launch files
-
catkin_fix
-
- catkin & colcon build successfully
- reverted back run to devel space (for the time being)
-
- Switch to Apache 2 license (develop branch)
(#1741)
- Switch to Apache 2
* Replace BSD-3 license header with Apache 2 and reassign copyright to the Autoware Foundation.
- Update license on Python files
- Update copyright years
- Add #ifndef/define _POINTS_IMAGE_H_
- Updated license comment
- Use colcon as the build tool
(#1704)
- Switch to colcon as the build tool instead of catkin
- Added cmake-target
- Added note about the second colcon call
- Added warning about catkin* scripts being deprecated
- Fix COLCON_OPTS
- Added install targets
- Update Docker image tags
- Message packages fixes
- Fix missing dependency
- Feature/perception visualization cleanup
(#1648)
-
- Initial commit for visualization package
-
Removal of all visualization messages from perception nodes
-
Visualization dependency removal
-
Launch file modification
-
- Fixes to visualization
-
Error on Clustering CPU
-
Reduce verbosity on markers
-
intial commit
-
- Changed to 2 spaces indentation
-
Added README
-
Fixed README messages type
-
2 space indenting
-
ros clang format
-
Publish acceleration and velocity from ukf tracker
-
Remove hardcoded path
-
Updated README
-
updated prototype
-
Prototype update for header and usage
-
Removed unknown label from being reported
-
Updated publishing orientation to match develop
-
- Published all the trackers
-
File truncated at 100 lines see the full file
Package Dependencies
Deps | Name |
---|---|
autoware_build_flags | |
catkin | |
autoware_config_msgs | |
autoware_msgs | |
cv_bridge | |
image_transport | |
roscpp | |
sensor_msgs | |
std_msgs |
System Dependencies
Dependant Packages
Launch files
- launch/vision_yolo2_detect.launch
-
- gpu_device_id [default: 0]
- score_threshold [default: 0.30]
- nms_threshold [default: 0.45]
- network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov2.cfg]
- pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov2.weights]
- names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
- camera_id [default: /]
- image_src [default: /image_raw]
- launch/vision_yolo3_detect.launch
-
- gpu_device_id [default: 0]
- score_threshold [default: 0.30]
- nms_threshold [default: 0.30]
- network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov3.cfg]
- pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov3.weights]
- names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
- camera_id [default: /]
- image_src [default: /image_raw]
Messages
Services
Plugins
Recent questions tagged vision_darknet_detect at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 1.12.0 |
License | Apache 2 |
Build type | CATKIN |
Use | RECOMMENDED |
Repository Summary
Description | autoware.ai perf |
Checkout URI | https://github.com/is-whale/autoware_learn.git |
VCS Type | git |
VCS Version | 1.14 |
Last Updated | 2025-03-14 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Abraham Monrroy
Authors
Vision Darknet Detect
Autoware package based on Darknet that supports Yolov3 and Yolov2 image detector.
Requirements
- NVIDIA GPU with CUDA installed
- Pretrained YOLOv3 or YOLOv2 model on COCO dataset, Models found on the YOLO website.
- The weights file must be placed in
vision_darknet_detect/darknet/data/
.
How to launch
-
From a sourced terminal:
roslaunch vision_darknet_detect vision_yolo3_detect.launch
roslaunch vision_darknet_detect vision_yolo2_detect.launch
-
From Runtime Manager:
Computing Tab -> Detection/ vision_detector -> vision_darknet_detect
You can change the config and weights file, as well as other parameters, by clicking [app]
Parameters
Launch file available parameters:
Parameter | Type | Description |
---|---|---|
score_threshold |
Double | Detections with a confidence value larger than this value will be displayed. Default 0.5 . |
nms_threshold |
Double | Non-Maximum suppresion area threshold ratio to merge proposals. Default 0.45 . |
network_definition_file |
String | Network architecture definition configuration file. Default yolov3.cfg . |
pretrained_model_file |
String | Path to pretrained model. Default yolov3.weights . |
camera_id |
String | Camera workspace. Default / . |
image_src |
String | Image source topic. Default /image_raw . |
names_file |
String | Path to pretrained model. Default coco.names . |
Subscribed topics
Topic | Type | Objective |
---|---|---|
/image_raw |
sensor_msgs/Image |
Source image stream to perform detection. |
/config/Yolo3 |
autoware_config_msgs/ConfigSSD |
Configuration adjustment for threshold. |
Published topics
Topic | Type | Objective |
---|---|---|
/detection/vision_objects |
autoware_msgs::DetectedObjectArray |
Contains the coordinates of the bounding box in image coordinates for detected objects. |
Video
Changelog for package vision_yolo3_detect
1.11.0 (2019-03-21)
-
Removing CUDA dependencies for Darknet Yolov3 (#1784)
* Removing CUDA dependencies for Darknet yolov3 If the host machine does not have CUDA, this will build the vision_darknet_detect package based on a pre-built darknet directory (which doesn't require CUDA as there are no CUDA dependencies for yolov3).
* Update ros/src/computing/perception/detection/vision_detector/packages/vision_darknet_detect/CMakeLists.txt Co-Authored-By: K1504296 <<greytrt@gmail.com>>
-
Fix license notice in corresponding package.xml
-
Initial release of object filter
-
Contributors: Abraham Monrroy, Theodore, amc-nu
1.10.0 (2019-01-17)
- Fixes for catkin_make
- [fix] SSD detector, cmake colcon
(#1837)
-
Fixes for new colcon script on ssd cuda based node
-
Fixed to RTM and darknet launch files
-
catkin_fix
-
- catkin & colcon build successfully
- reverted back run to devel space (for the time being)
-
- Switch to Apache 2 license (develop branch)
(#1741)
- Switch to Apache 2
* Replace BSD-3 license header with Apache 2 and reassign copyright to the Autoware Foundation.
- Update license on Python files
- Update copyright years
- Add #ifndef/define _POINTS_IMAGE_H_
- Updated license comment
- Use colcon as the build tool
(#1704)
- Switch to colcon as the build tool instead of catkin
- Added cmake-target
- Added note about the second colcon call
- Added warning about catkin* scripts being deprecated
- Fix COLCON_OPTS
- Added install targets
- Update Docker image tags
- Message packages fixes
- Fix missing dependency
- Feature/perception visualization cleanup
(#1648)
-
- Initial commit for visualization package
-
Removal of all visualization messages from perception nodes
-
Visualization dependency removal
-
Launch file modification
-
- Fixes to visualization
-
Error on Clustering CPU
-
Reduce verbosity on markers
-
intial commit
-
- Changed to 2 spaces indentation
-
Added README
-
Fixed README messages type
-
2 space indenting
-
ros clang format
-
Publish acceleration and velocity from ukf tracker
-
Remove hardcoded path
-
Updated README
-
updated prototype
-
Prototype update for header and usage
-
Removed unknown label from being reported
-
Updated publishing orientation to match develop
-
- Published all the trackers
-
File truncated at 100 lines see the full file
Package Dependencies
Deps | Name |
---|---|
autoware_build_flags | |
catkin | |
autoware_config_msgs | |
autoware_msgs | |
cv_bridge | |
image_transport | |
roscpp | |
sensor_msgs | |
std_msgs |
System Dependencies
Dependant Packages
Launch files
- launch/vision_yolo2_detect.launch
-
- gpu_device_id [default: 0]
- score_threshold [default: 0.30]
- nms_threshold [default: 0.45]
- network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov2.cfg]
- pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov2.weights]
- names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
- camera_id [default: /]
- image_src [default: /image_raw]
- launch/vision_yolo3_detect.launch
-
- gpu_device_id [default: 0]
- score_threshold [default: 0.30]
- nms_threshold [default: 0.30]
- network_definition_file [default: $(find vision_darknet_detect)/darknet/cfg/yolov3.cfg]
- pretrained_model_file [default: $(find vision_darknet_detect)/darknet/data/yolov3.weights]
- names_file [default: $(find vision_darknet_detect)/darknet/cfg/coco.names]
- camera_id [default: /]
- image_src [default: /image_raw]