No version for distro humble showing github. Known supported distros are highlighted in the buttons above.

Package Summary

Tags No category tags.
Version 0.0.0
License MIT
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description Software for guidance, navigation and control for the Vortex AUVs. Purpose built for competing in AUV/ROV competitions.
Checkout URI https://github.com/vortexntnu/vortex-auv.git
VCS Type git
VCS Version main
Last Updated 2025-06-25
Dev Status UNKNOWN
Released UNRELEASED
Tags robot ubuntu ros finite-state-machine autonomous sensor-fusion auv robosub robot-localization motion-control pathplanning autonomous-robots vortex-auv
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

LOS Guidance modual for guidance of AUV

Additional Links

No additional links.

Maintainers

  • talhanc

Authors

No additional authors.

ALSO Guidance Law for 3D Path Following

The guidance law gives calculates the desired heading angle $\psi_d$ and desired pitch angle $\theta_d$. The crab angles $\beta_c$ and $\alpha_c$ are estimated adaptively. The guidance law looks like

\psi_d = \pi_h - \hat{\beta}_c - \tan^{-1}\left(\frac{y_e^p}{\Delta_h}\right)


\dot{\hat{\beta}}_c = \gamma_h \frac{\Delta_h}{\sqrt{\Delta_h^2 + (y_e^p)^2}} y_e^p

\theta_d = \pi_v + \hat{\alpha}_c + \tan^{-1}\left(\frac{z_e^p}{\Delta_v}\right)

\dot{\hat{\alpha}}_c = \gamma_v \frac{\Delta_v}{\sqrt{\Delta_v^2 + (z_e^p)^2}} z_e^p

where

  • $\Delta_h$ is the horizontal lookahead distance
  • $\Delta_v$ is the vertical lookahead distance
  • $\gamma_h$ and $\gamma_v$ are the adaptive gains
  • $y_e^p$ is the cross-track error
  • $z_e^p$ is the vertical-track error

The azimuth angle $\pi_v$ and the elevation angle $\pi_h$ can be found by

\pi_h = \text{atan2}(y_{i+1}^n - y_i^n, x_{i+1}^n, - x_i^n)

\pi_v = \text{atan2}(-(z_{i+1}^n - z_i^n), \sqrt{(x_{i+1}^n - x_i^n)^2 + (y_{i+1}^n - y_i^n)^2})

where $P_i^n = (x_i^n, y_i^n, z_i^n)$ is the previous waypoint in the north-east-down frame and $P_{i+1}^n = (x_{i+1}^n, y_{i+1}^n, z_{i+1}^n)$ is the next waypoint in north-east-down frame.

The along-, cross- and vertical-track errors in the path-tangential frame are found by

\begin{bmatrix}
x_e^p \\ y_e^p \\ z_e^p
\end{bmatrix} = \mathbf{R}_{y, \pi_v}^\top \mathbf{R}_{z, \pi_h}^\top \left( \begin{bmatrix}
x^n \\ y^n \\ z^n
\end{bmatrix} - \begin{bmatrix}
x_i^n \\ y_i^n \\ z_i^n
\end{bmatrix}
\right)

where $P^n = (x^n, y^n, z^n)$ is the current position of the drone.

CHANGELOG
No CHANGELOG found.

Package Dependencies

System Dependencies

Name
eigen

Dependant Packages

No known dependants.

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged los_guidance at Robotics Stack Exchange

No version for distro jazzy showing github. Known supported distros are highlighted in the buttons above.

Package Summary

Tags No category tags.
Version 0.0.0
License MIT
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description Software for guidance, navigation and control for the Vortex AUVs. Purpose built for competing in AUV/ROV competitions.
Checkout URI https://github.com/vortexntnu/vortex-auv.git
VCS Type git
VCS Version main
Last Updated 2025-06-25
Dev Status UNKNOWN
Released UNRELEASED
Tags robot ubuntu ros finite-state-machine autonomous sensor-fusion auv robosub robot-localization motion-control pathplanning autonomous-robots vortex-auv
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

LOS Guidance modual for guidance of AUV

Additional Links

No additional links.

Maintainers

  • talhanc

Authors

No additional authors.

ALSO Guidance Law for 3D Path Following

The guidance law gives calculates the desired heading angle $\psi_d$ and desired pitch angle $\theta_d$. The crab angles $\beta_c$ and $\alpha_c$ are estimated adaptively. The guidance law looks like

\psi_d = \pi_h - \hat{\beta}_c - \tan^{-1}\left(\frac{y_e^p}{\Delta_h}\right)


\dot{\hat{\beta}}_c = \gamma_h \frac{\Delta_h}{\sqrt{\Delta_h^2 + (y_e^p)^2}} y_e^p

\theta_d = \pi_v + \hat{\alpha}_c + \tan^{-1}\left(\frac{z_e^p}{\Delta_v}\right)

\dot{\hat{\alpha}}_c = \gamma_v \frac{\Delta_v}{\sqrt{\Delta_v^2 + (z_e^p)^2}} z_e^p

where

  • $\Delta_h$ is the horizontal lookahead distance
  • $\Delta_v$ is the vertical lookahead distance
  • $\gamma_h$ and $\gamma_v$ are the adaptive gains
  • $y_e^p$ is the cross-track error
  • $z_e^p$ is the vertical-track error

The azimuth angle $\pi_v$ and the elevation angle $\pi_h$ can be found by

\pi_h = \text{atan2}(y_{i+1}^n - y_i^n, x_{i+1}^n, - x_i^n)

\pi_v = \text{atan2}(-(z_{i+1}^n - z_i^n), \sqrt{(x_{i+1}^n - x_i^n)^2 + (y_{i+1}^n - y_i^n)^2})

where $P_i^n = (x_i^n, y_i^n, z_i^n)$ is the previous waypoint in the north-east-down frame and $P_{i+1}^n = (x_{i+1}^n, y_{i+1}^n, z_{i+1}^n)$ is the next waypoint in north-east-down frame.

The along-, cross- and vertical-track errors in the path-tangential frame are found by

\begin{bmatrix}
x_e^p \\ y_e^p \\ z_e^p
\end{bmatrix} = \mathbf{R}_{y, \pi_v}^\top \mathbf{R}_{z, \pi_h}^\top \left( \begin{bmatrix}
x^n \\ y^n \\ z^n
\end{bmatrix} - \begin{bmatrix}
x_i^n \\ y_i^n \\ z_i^n
\end{bmatrix}
\right)

where $P^n = (x^n, y^n, z^n)$ is the current position of the drone.

CHANGELOG
No CHANGELOG found.

Package Dependencies

System Dependencies

Name
eigen

Dependant Packages

No known dependants.

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged los_guidance at Robotics Stack Exchange

No version for distro kilted showing github. Known supported distros are highlighted in the buttons above.

Package Summary

Tags No category tags.
Version 0.0.0
License MIT
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description Software for guidance, navigation and control for the Vortex AUVs. Purpose built for competing in AUV/ROV competitions.
Checkout URI https://github.com/vortexntnu/vortex-auv.git
VCS Type git
VCS Version main
Last Updated 2025-06-25
Dev Status UNKNOWN
Released UNRELEASED
Tags robot ubuntu ros finite-state-machine autonomous sensor-fusion auv robosub robot-localization motion-control pathplanning autonomous-robots vortex-auv
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

LOS Guidance modual for guidance of AUV

Additional Links

No additional links.

Maintainers

  • talhanc

Authors

No additional authors.

ALSO Guidance Law for 3D Path Following

The guidance law gives calculates the desired heading angle $\psi_d$ and desired pitch angle $\theta_d$. The crab angles $\beta_c$ and $\alpha_c$ are estimated adaptively. The guidance law looks like

\psi_d = \pi_h - \hat{\beta}_c - \tan^{-1}\left(\frac{y_e^p}{\Delta_h}\right)


\dot{\hat{\beta}}_c = \gamma_h \frac{\Delta_h}{\sqrt{\Delta_h^2 + (y_e^p)^2}} y_e^p

\theta_d = \pi_v + \hat{\alpha}_c + \tan^{-1}\left(\frac{z_e^p}{\Delta_v}\right)

\dot{\hat{\alpha}}_c = \gamma_v \frac{\Delta_v}{\sqrt{\Delta_v^2 + (z_e^p)^2}} z_e^p

where

  • $\Delta_h$ is the horizontal lookahead distance
  • $\Delta_v$ is the vertical lookahead distance
  • $\gamma_h$ and $\gamma_v$ are the adaptive gains
  • $y_e^p$ is the cross-track error
  • $z_e^p$ is the vertical-track error

The azimuth angle $\pi_v$ and the elevation angle $\pi_h$ can be found by

\pi_h = \text{atan2}(y_{i+1}^n - y_i^n, x_{i+1}^n, - x_i^n)

\pi_v = \text{atan2}(-(z_{i+1}^n - z_i^n), \sqrt{(x_{i+1}^n - x_i^n)^2 + (y_{i+1}^n - y_i^n)^2})

where $P_i^n = (x_i^n, y_i^n, z_i^n)$ is the previous waypoint in the north-east-down frame and $P_{i+1}^n = (x_{i+1}^n, y_{i+1}^n, z_{i+1}^n)$ is the next waypoint in north-east-down frame.

The along-, cross- and vertical-track errors in the path-tangential frame are found by

\begin{bmatrix}
x_e^p \\ y_e^p \\ z_e^p
\end{bmatrix} = \mathbf{R}_{y, \pi_v}^\top \mathbf{R}_{z, \pi_h}^\top \left( \begin{bmatrix}
x^n \\ y^n \\ z^n
\end{bmatrix} - \begin{bmatrix}
x_i^n \\ y_i^n \\ z_i^n
\end{bmatrix}
\right)

where $P^n = (x^n, y^n, z^n)$ is the current position of the drone.

CHANGELOG
No CHANGELOG found.

Package Dependencies

System Dependencies

Name
eigen

Dependant Packages

No known dependants.

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged los_guidance at Robotics Stack Exchange

No version for distro rolling showing github. Known supported distros are highlighted in the buttons above.

Package Summary

Tags No category tags.
Version 0.0.0
License MIT
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description Software for guidance, navigation and control for the Vortex AUVs. Purpose built for competing in AUV/ROV competitions.
Checkout URI https://github.com/vortexntnu/vortex-auv.git
VCS Type git
VCS Version main
Last Updated 2025-06-25
Dev Status UNKNOWN
Released UNRELEASED
Tags robot ubuntu ros finite-state-machine autonomous sensor-fusion auv robosub robot-localization motion-control pathplanning autonomous-robots vortex-auv
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

LOS Guidance modual for guidance of AUV

Additional Links

No additional links.

Maintainers

  • talhanc

Authors

No additional authors.

ALSO Guidance Law for 3D Path Following

The guidance law gives calculates the desired heading angle $\psi_d$ and desired pitch angle $\theta_d$. The crab angles $\beta_c$ and $\alpha_c$ are estimated adaptively. The guidance law looks like

\psi_d = \pi_h - \hat{\beta}_c - \tan^{-1}\left(\frac{y_e^p}{\Delta_h}\right)


\dot{\hat{\beta}}_c = \gamma_h \frac{\Delta_h}{\sqrt{\Delta_h^2 + (y_e^p)^2}} y_e^p

\theta_d = \pi_v + \hat{\alpha}_c + \tan^{-1}\left(\frac{z_e^p}{\Delta_v}\right)

\dot{\hat{\alpha}}_c = \gamma_v \frac{\Delta_v}{\sqrt{\Delta_v^2 + (z_e^p)^2}} z_e^p

where

  • $\Delta_h$ is the horizontal lookahead distance
  • $\Delta_v$ is the vertical lookahead distance
  • $\gamma_h$ and $\gamma_v$ are the adaptive gains
  • $y_e^p$ is the cross-track error
  • $z_e^p$ is the vertical-track error

The azimuth angle $\pi_v$ and the elevation angle $\pi_h$ can be found by

\pi_h = \text{atan2}(y_{i+1}^n - y_i^n, x_{i+1}^n, - x_i^n)

\pi_v = \text{atan2}(-(z_{i+1}^n - z_i^n), \sqrt{(x_{i+1}^n - x_i^n)^2 + (y_{i+1}^n - y_i^n)^2})

where $P_i^n = (x_i^n, y_i^n, z_i^n)$ is the previous waypoint in the north-east-down frame and $P_{i+1}^n = (x_{i+1}^n, y_{i+1}^n, z_{i+1}^n)$ is the next waypoint in north-east-down frame.

The along-, cross- and vertical-track errors in the path-tangential frame are found by

\begin{bmatrix}
x_e^p \\ y_e^p \\ z_e^p
\end{bmatrix} = \mathbf{R}_{y, \pi_v}^\top \mathbf{R}_{z, \pi_h}^\top \left( \begin{bmatrix}
x^n \\ y^n \\ z^n
\end{bmatrix} - \begin{bmatrix}
x_i^n \\ y_i^n \\ z_i^n
\end{bmatrix}
\right)

where $P^n = (x^n, y^n, z^n)$ is the current position of the drone.

CHANGELOG
No CHANGELOG found.

Package Dependencies

System Dependencies

Name
eigen

Dependant Packages

No known dependants.

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged los_guidance at Robotics Stack Exchange

Package Summary

Tags No category tags.
Version 0.0.0
License MIT
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description Software for guidance, navigation and control for the Vortex AUVs. Purpose built for competing in AUV/ROV competitions.
Checkout URI https://github.com/vortexntnu/vortex-auv.git
VCS Type git
VCS Version main
Last Updated 2025-06-25
Dev Status UNKNOWN
Released UNRELEASED
Tags robot ubuntu ros finite-state-machine autonomous sensor-fusion auv robosub robot-localization motion-control pathplanning autonomous-robots vortex-auv
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

LOS Guidance modual for guidance of AUV

Additional Links

No additional links.

Maintainers

  • talhanc

Authors

No additional authors.

ALSO Guidance Law for 3D Path Following

The guidance law gives calculates the desired heading angle $\psi_d$ and desired pitch angle $\theta_d$. The crab angles $\beta_c$ and $\alpha_c$ are estimated adaptively. The guidance law looks like

\psi_d = \pi_h - \hat{\beta}_c - \tan^{-1}\left(\frac{y_e^p}{\Delta_h}\right)


\dot{\hat{\beta}}_c = \gamma_h \frac{\Delta_h}{\sqrt{\Delta_h^2 + (y_e^p)^2}} y_e^p

\theta_d = \pi_v + \hat{\alpha}_c + \tan^{-1}\left(\frac{z_e^p}{\Delta_v}\right)

\dot{\hat{\alpha}}_c = \gamma_v \frac{\Delta_v}{\sqrt{\Delta_v^2 + (z_e^p)^2}} z_e^p

where

  • $\Delta_h$ is the horizontal lookahead distance
  • $\Delta_v$ is the vertical lookahead distance
  • $\gamma_h$ and $\gamma_v$ are the adaptive gains
  • $y_e^p$ is the cross-track error
  • $z_e^p$ is the vertical-track error

The azimuth angle $\pi_v$ and the elevation angle $\pi_h$ can be found by

\pi_h = \text{atan2}(y_{i+1}^n - y_i^n, x_{i+1}^n, - x_i^n)

\pi_v = \text{atan2}(-(z_{i+1}^n - z_i^n), \sqrt{(x_{i+1}^n - x_i^n)^2 + (y_{i+1}^n - y_i^n)^2})

where $P_i^n = (x_i^n, y_i^n, z_i^n)$ is the previous waypoint in the north-east-down frame and $P_{i+1}^n = (x_{i+1}^n, y_{i+1}^n, z_{i+1}^n)$ is the next waypoint in north-east-down frame.

The along-, cross- and vertical-track errors in the path-tangential frame are found by

\begin{bmatrix}
x_e^p \\ y_e^p \\ z_e^p
\end{bmatrix} = \mathbf{R}_{y, \pi_v}^\top \mathbf{R}_{z, \pi_h}^\top \left( \begin{bmatrix}
x^n \\ y^n \\ z^n
\end{bmatrix} - \begin{bmatrix}
x_i^n \\ y_i^n \\ z_i^n
\end{bmatrix}
\right)

where $P^n = (x^n, y^n, z^n)$ is the current position of the drone.

CHANGELOG
No CHANGELOG found.

Package Dependencies

System Dependencies

Name
eigen

Dependant Packages

No known dependants.

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged los_guidance at Robotics Stack Exchange

No version for distro galactic showing github. Known supported distros are highlighted in the buttons above.

Package Summary

Tags No category tags.
Version 0.0.0
License MIT
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description Software for guidance, navigation and control for the Vortex AUVs. Purpose built for competing in AUV/ROV competitions.
Checkout URI https://github.com/vortexntnu/vortex-auv.git
VCS Type git
VCS Version main
Last Updated 2025-06-25
Dev Status UNKNOWN
Released UNRELEASED
Tags robot ubuntu ros finite-state-machine autonomous sensor-fusion auv robosub robot-localization motion-control pathplanning autonomous-robots vortex-auv
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

LOS Guidance modual for guidance of AUV

Additional Links

No additional links.

Maintainers

  • talhanc

Authors

No additional authors.

ALSO Guidance Law for 3D Path Following

The guidance law gives calculates the desired heading angle $\psi_d$ and desired pitch angle $\theta_d$. The crab angles $\beta_c$ and $\alpha_c$ are estimated adaptively. The guidance law looks like

\psi_d = \pi_h - \hat{\beta}_c - \tan^{-1}\left(\frac{y_e^p}{\Delta_h}\right)


\dot{\hat{\beta}}_c = \gamma_h \frac{\Delta_h}{\sqrt{\Delta_h^2 + (y_e^p)^2}} y_e^p

\theta_d = \pi_v + \hat{\alpha}_c + \tan^{-1}\left(\frac{z_e^p}{\Delta_v}\right)

\dot{\hat{\alpha}}_c = \gamma_v \frac{\Delta_v}{\sqrt{\Delta_v^2 + (z_e^p)^2}} z_e^p

where

  • $\Delta_h$ is the horizontal lookahead distance
  • $\Delta_v$ is the vertical lookahead distance
  • $\gamma_h$ and $\gamma_v$ are the adaptive gains
  • $y_e^p$ is the cross-track error
  • $z_e^p$ is the vertical-track error

The azimuth angle $\pi_v$ and the elevation angle $\pi_h$ can be found by

\pi_h = \text{atan2}(y_{i+1}^n - y_i^n, x_{i+1}^n, - x_i^n)

\pi_v = \text{atan2}(-(z_{i+1}^n - z_i^n), \sqrt{(x_{i+1}^n - x_i^n)^2 + (y_{i+1}^n - y_i^n)^2})

where $P_i^n = (x_i^n, y_i^n, z_i^n)$ is the previous waypoint in the north-east-down frame and $P_{i+1}^n = (x_{i+1}^n, y_{i+1}^n, z_{i+1}^n)$ is the next waypoint in north-east-down frame.

The along-, cross- and vertical-track errors in the path-tangential frame are found by

\begin{bmatrix}
x_e^p \\ y_e^p \\ z_e^p
\end{bmatrix} = \mathbf{R}_{y, \pi_v}^\top \mathbf{R}_{z, \pi_h}^\top \left( \begin{bmatrix}
x^n \\ y^n \\ z^n
\end{bmatrix} - \begin{bmatrix}
x_i^n \\ y_i^n \\ z_i^n
\end{bmatrix}
\right)

where $P^n = (x^n, y^n, z^n)$ is the current position of the drone.

CHANGELOG
No CHANGELOG found.

Package Dependencies

System Dependencies

Name
eigen

Dependant Packages

No known dependants.

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged los_guidance at Robotics Stack Exchange

No version for distro iron showing github. Known supported distros are highlighted in the buttons above.

Package Summary

Tags No category tags.
Version 0.0.0
License MIT
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description Software for guidance, navigation and control for the Vortex AUVs. Purpose built for competing in AUV/ROV competitions.
Checkout URI https://github.com/vortexntnu/vortex-auv.git
VCS Type git
VCS Version main
Last Updated 2025-06-25
Dev Status UNKNOWN
Released UNRELEASED
Tags robot ubuntu ros finite-state-machine autonomous sensor-fusion auv robosub robot-localization motion-control pathplanning autonomous-robots vortex-auv
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

LOS Guidance modual for guidance of AUV

Additional Links

No additional links.

Maintainers

  • talhanc

Authors

No additional authors.

ALSO Guidance Law for 3D Path Following

The guidance law gives calculates the desired heading angle $\psi_d$ and desired pitch angle $\theta_d$. The crab angles $\beta_c$ and $\alpha_c$ are estimated adaptively. The guidance law looks like

\psi_d = \pi_h - \hat{\beta}_c - \tan^{-1}\left(\frac{y_e^p}{\Delta_h}\right)


\dot{\hat{\beta}}_c = \gamma_h \frac{\Delta_h}{\sqrt{\Delta_h^2 + (y_e^p)^2}} y_e^p

\theta_d = \pi_v + \hat{\alpha}_c + \tan^{-1}\left(\frac{z_e^p}{\Delta_v}\right)

\dot{\hat{\alpha}}_c = \gamma_v \frac{\Delta_v}{\sqrt{\Delta_v^2 + (z_e^p)^2}} z_e^p

where

  • $\Delta_h$ is the horizontal lookahead distance
  • $\Delta_v$ is the vertical lookahead distance
  • $\gamma_h$ and $\gamma_v$ are the adaptive gains
  • $y_e^p$ is the cross-track error
  • $z_e^p$ is the vertical-track error

The azimuth angle $\pi_v$ and the elevation angle $\pi_h$ can be found by

\pi_h = \text{atan2}(y_{i+1}^n - y_i^n, x_{i+1}^n, - x_i^n)

\pi_v = \text{atan2}(-(z_{i+1}^n - z_i^n), \sqrt{(x_{i+1}^n - x_i^n)^2 + (y_{i+1}^n - y_i^n)^2})

where $P_i^n = (x_i^n, y_i^n, z_i^n)$ is the previous waypoint in the north-east-down frame and $P_{i+1}^n = (x_{i+1}^n, y_{i+1}^n, z_{i+1}^n)$ is the next waypoint in north-east-down frame.

The along-, cross- and vertical-track errors in the path-tangential frame are found by

\begin{bmatrix}
x_e^p \\ y_e^p \\ z_e^p
\end{bmatrix} = \mathbf{R}_{y, \pi_v}^\top \mathbf{R}_{z, \pi_h}^\top \left( \begin{bmatrix}
x^n \\ y^n \\ z^n
\end{bmatrix} - \begin{bmatrix}
x_i^n \\ y_i^n \\ z_i^n
\end{bmatrix}
\right)

where $P^n = (x^n, y^n, z^n)$ is the current position of the drone.

CHANGELOG
No CHANGELOG found.

Package Dependencies

System Dependencies

Name
eigen

Dependant Packages

No known dependants.

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged los_guidance at Robotics Stack Exchange

No version for distro melodic showing github. Known supported distros are highlighted in the buttons above.

Package Summary

Tags No category tags.
Version 0.0.0
License MIT
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description Software for guidance, navigation and control for the Vortex AUVs. Purpose built for competing in AUV/ROV competitions.
Checkout URI https://github.com/vortexntnu/vortex-auv.git
VCS Type git
VCS Version main
Last Updated 2025-06-25
Dev Status UNKNOWN
Released UNRELEASED
Tags robot ubuntu ros finite-state-machine autonomous sensor-fusion auv robosub robot-localization motion-control pathplanning autonomous-robots vortex-auv
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

LOS Guidance modual for guidance of AUV

Additional Links

No additional links.

Maintainers

  • talhanc

Authors

No additional authors.

ALSO Guidance Law for 3D Path Following

The guidance law gives calculates the desired heading angle $\psi_d$ and desired pitch angle $\theta_d$. The crab angles $\beta_c$ and $\alpha_c$ are estimated adaptively. The guidance law looks like

\psi_d = \pi_h - \hat{\beta}_c - \tan^{-1}\left(\frac{y_e^p}{\Delta_h}\right)


\dot{\hat{\beta}}_c = \gamma_h \frac{\Delta_h}{\sqrt{\Delta_h^2 + (y_e^p)^2}} y_e^p

\theta_d = \pi_v + \hat{\alpha}_c + \tan^{-1}\left(\frac{z_e^p}{\Delta_v}\right)

\dot{\hat{\alpha}}_c = \gamma_v \frac{\Delta_v}{\sqrt{\Delta_v^2 + (z_e^p)^2}} z_e^p

where

  • $\Delta_h$ is the horizontal lookahead distance
  • $\Delta_v$ is the vertical lookahead distance
  • $\gamma_h$ and $\gamma_v$ are the adaptive gains
  • $y_e^p$ is the cross-track error
  • $z_e^p$ is the vertical-track error

The azimuth angle $\pi_v$ and the elevation angle $\pi_h$ can be found by

\pi_h = \text{atan2}(y_{i+1}^n - y_i^n, x_{i+1}^n, - x_i^n)

\pi_v = \text{atan2}(-(z_{i+1}^n - z_i^n), \sqrt{(x_{i+1}^n - x_i^n)^2 + (y_{i+1}^n - y_i^n)^2})

where $P_i^n = (x_i^n, y_i^n, z_i^n)$ is the previous waypoint in the north-east-down frame and $P_{i+1}^n = (x_{i+1}^n, y_{i+1}^n, z_{i+1}^n)$ is the next waypoint in north-east-down frame.

The along-, cross- and vertical-track errors in the path-tangential frame are found by

\begin{bmatrix}
x_e^p \\ y_e^p \\ z_e^p
\end{bmatrix} = \mathbf{R}_{y, \pi_v}^\top \mathbf{R}_{z, \pi_h}^\top \left( \begin{bmatrix}
x^n \\ y^n \\ z^n
\end{bmatrix} - \begin{bmatrix}
x_i^n \\ y_i^n \\ z_i^n
\end{bmatrix}
\right)

where $P^n = (x^n, y^n, z^n)$ is the current position of the drone.

CHANGELOG
No CHANGELOG found.

Package Dependencies

System Dependencies

Name
eigen

Dependant Packages

No known dependants.

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged los_guidance at Robotics Stack Exchange

No version for distro noetic showing github. Known supported distros are highlighted in the buttons above.

Package Summary

Tags No category tags.
Version 0.0.0
License MIT
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description Software for guidance, navigation and control for the Vortex AUVs. Purpose built for competing in AUV/ROV competitions.
Checkout URI https://github.com/vortexntnu/vortex-auv.git
VCS Type git
VCS Version main
Last Updated 2025-06-25
Dev Status UNKNOWN
Released UNRELEASED
Tags robot ubuntu ros finite-state-machine autonomous sensor-fusion auv robosub robot-localization motion-control pathplanning autonomous-robots vortex-auv
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

LOS Guidance modual for guidance of AUV

Additional Links

No additional links.

Maintainers

  • talhanc

Authors

No additional authors.

ALSO Guidance Law for 3D Path Following

The guidance law gives calculates the desired heading angle $\psi_d$ and desired pitch angle $\theta_d$. The crab angles $\beta_c$ and $\alpha_c$ are estimated adaptively. The guidance law looks like

\psi_d = \pi_h - \hat{\beta}_c - \tan^{-1}\left(\frac{y_e^p}{\Delta_h}\right)


\dot{\hat{\beta}}_c = \gamma_h \frac{\Delta_h}{\sqrt{\Delta_h^2 + (y_e^p)^2}} y_e^p

\theta_d = \pi_v + \hat{\alpha}_c + \tan^{-1}\left(\frac{z_e^p}{\Delta_v}\right)

\dot{\hat{\alpha}}_c = \gamma_v \frac{\Delta_v}{\sqrt{\Delta_v^2 + (z_e^p)^2}} z_e^p

where

  • $\Delta_h$ is the horizontal lookahead distance
  • $\Delta_v$ is the vertical lookahead distance
  • $\gamma_h$ and $\gamma_v$ are the adaptive gains
  • $y_e^p$ is the cross-track error
  • $z_e^p$ is the vertical-track error

The azimuth angle $\pi_v$ and the elevation angle $\pi_h$ can be found by

\pi_h = \text{atan2}(y_{i+1}^n - y_i^n, x_{i+1}^n, - x_i^n)

\pi_v = \text{atan2}(-(z_{i+1}^n - z_i^n), \sqrt{(x_{i+1}^n - x_i^n)^2 + (y_{i+1}^n - y_i^n)^2})

where $P_i^n = (x_i^n, y_i^n, z_i^n)$ is the previous waypoint in the north-east-down frame and $P_{i+1}^n = (x_{i+1}^n, y_{i+1}^n, z_{i+1}^n)$ is the next waypoint in north-east-down frame.

The along-, cross- and vertical-track errors in the path-tangential frame are found by

\begin{bmatrix}
x_e^p \\ y_e^p \\ z_e^p
\end{bmatrix} = \mathbf{R}_{y, \pi_v}^\top \mathbf{R}_{z, \pi_h}^\top \left( \begin{bmatrix}
x^n \\ y^n \\ z^n
\end{bmatrix} - \begin{bmatrix}
x_i^n \\ y_i^n \\ z_i^n
\end{bmatrix}
\right)

where $P^n = (x^n, y^n, z^n)$ is the current position of the drone.

CHANGELOG
No CHANGELOG found.

Package Dependencies

System Dependencies

Name
eigen

Dependant Packages

No known dependants.

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged los_guidance at Robotics Stack Exchange