Package Summary
Tags | No category tags. |
Version | 0.0.0 |
License | TODO: License declaration |
Build type | AMENT_PYTHON |
Use | RECOMMENDED |
Repository Summary
Description | Use ROS2 and Gazebo to simulate 2 UR5 assembling objects. |
Checkout URI | https://github.com/zitongbai/ur5e_vision_assemble.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-07-01 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- xiaobaige
Authors
This package is used for object detection and segmentation
Dependences
First, create a conda env for yolov5 (we recommend python 3.10), e.g.
conda create -n yolo python=3.10
conda activate yolo
Then, in the folder of yolov5, install the requirements:
# in yolov5 path, e.g. src/vision/vision/yolov5
pip install -r requirements.txt
In order to use both python modules in ROS2 and those in conda env, you should change the conda env path mannully in the file src/vision/vision/obj_seg.py
, src/vision/vision/obj_detect.py
, etc.
# you should change the path here according to your conda env
sys.path.append(str(Path.home()) + '/miniforge3/envs/yolo/lib/python3.10/site-packages')
Train the network
Go to the path of yolov5
# make sure you have activated the conda env.
# otherwise:
conda activate yolo
Then train the model.
python segment/train.py --img 960 --batch 8 --epochs 300 --data gazebo_seg.yaml --weights yolov5s-seg.pt --cache
the datasets and weights will be downloaded automatically.
- datasets in
vision/datasets
- weights in
yolov5/yolov5s-seg.pt
Remember to copy the training result (weights) from yolov5/runs/exp*/weights/best.pt
to yolov5
Dependant Packages
Name | Deps |
---|---|
bringup |
Launch files
Messages
Services
Plugins
Recent questions tagged vision at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.0.0 |
License | TODO: License declaration |
Build type | AMENT_PYTHON |
Use | RECOMMENDED |
Repository Summary
Description | Use ROS2 and Gazebo to simulate 2 UR5 assembling objects. |
Checkout URI | https://github.com/zitongbai/ur5e_vision_assemble.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-07-01 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- xiaobaige
Authors
This package is used for object detection and segmentation
Dependences
First, create a conda env for yolov5 (we recommend python 3.10), e.g.
conda create -n yolo python=3.10
conda activate yolo
Then, in the folder of yolov5, install the requirements:
# in yolov5 path, e.g. src/vision/vision/yolov5
pip install -r requirements.txt
In order to use both python modules in ROS2 and those in conda env, you should change the conda env path mannully in the file src/vision/vision/obj_seg.py
, src/vision/vision/obj_detect.py
, etc.
# you should change the path here according to your conda env
sys.path.append(str(Path.home()) + '/miniforge3/envs/yolo/lib/python3.10/site-packages')
Train the network
Go to the path of yolov5
# make sure you have activated the conda env.
# otherwise:
conda activate yolo
Then train the model.
python segment/train.py --img 960 --batch 8 --epochs 300 --data gazebo_seg.yaml --weights yolov5s-seg.pt --cache
the datasets and weights will be downloaded automatically.
- datasets in
vision/datasets
- weights in
yolov5/yolov5s-seg.pt
Remember to copy the training result (weights) from yolov5/runs/exp*/weights/best.pt
to yolov5
Dependant Packages
Name | Deps |
---|---|
bringup |
Launch files
Messages
Services
Plugins
Recent questions tagged vision at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.0.0 |
License | TODO: License declaration |
Build type | AMENT_PYTHON |
Use | RECOMMENDED |
Repository Summary
Description | Use ROS2 and Gazebo to simulate 2 UR5 assembling objects. |
Checkout URI | https://github.com/zitongbai/ur5e_vision_assemble.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-07-01 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- xiaobaige
Authors
This package is used for object detection and segmentation
Dependences
First, create a conda env for yolov5 (we recommend python 3.10), e.g.
conda create -n yolo python=3.10
conda activate yolo
Then, in the folder of yolov5, install the requirements:
# in yolov5 path, e.g. src/vision/vision/yolov5
pip install -r requirements.txt
In order to use both python modules in ROS2 and those in conda env, you should change the conda env path mannully in the file src/vision/vision/obj_seg.py
, src/vision/vision/obj_detect.py
, etc.
# you should change the path here according to your conda env
sys.path.append(str(Path.home()) + '/miniforge3/envs/yolo/lib/python3.10/site-packages')
Train the network
Go to the path of yolov5
# make sure you have activated the conda env.
# otherwise:
conda activate yolo
Then train the model.
python segment/train.py --img 960 --batch 8 --epochs 300 --data gazebo_seg.yaml --weights yolov5s-seg.pt --cache
the datasets and weights will be downloaded automatically.
- datasets in
vision/datasets
- weights in
yolov5/yolov5s-seg.pt
Remember to copy the training result (weights) from yolov5/runs/exp*/weights/best.pt
to yolov5
Dependant Packages
Name | Deps |
---|---|
bringup |
Launch files
Messages
Services
Plugins
Recent questions tagged vision at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.0.0 |
License | TODO: License declaration |
Build type | AMENT_PYTHON |
Use | RECOMMENDED |
Repository Summary
Description | Use ROS2 and Gazebo to simulate 2 UR5 assembling objects. |
Checkout URI | https://github.com/zitongbai/ur5e_vision_assemble.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-07-01 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- xiaobaige
Authors
This package is used for object detection and segmentation
Dependences
First, create a conda env for yolov5 (we recommend python 3.10), e.g.
conda create -n yolo python=3.10
conda activate yolo
Then, in the folder of yolov5, install the requirements:
# in yolov5 path, e.g. src/vision/vision/yolov5
pip install -r requirements.txt
In order to use both python modules in ROS2 and those in conda env, you should change the conda env path mannully in the file src/vision/vision/obj_seg.py
, src/vision/vision/obj_detect.py
, etc.
# you should change the path here according to your conda env
sys.path.append(str(Path.home()) + '/miniforge3/envs/yolo/lib/python3.10/site-packages')
Train the network
Go to the path of yolov5
# make sure you have activated the conda env.
# otherwise:
conda activate yolo
Then train the model.
python segment/train.py --img 960 --batch 8 --epochs 300 --data gazebo_seg.yaml --weights yolov5s-seg.pt --cache
the datasets and weights will be downloaded automatically.
- datasets in
vision/datasets
- weights in
yolov5/yolov5s-seg.pt
Remember to copy the training result (weights) from yolov5/runs/exp*/weights/best.pt
to yolov5
Dependant Packages
Name | Deps |
---|---|
bringup |
Launch files
Messages
Services
Plugins
Recent questions tagged vision at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.0.0 |
License | TODO: License declaration |
Build type | AMENT_PYTHON |
Use | RECOMMENDED |
Repository Summary
Description | Use ROS2 and Gazebo to simulate 2 UR5 assembling objects. |
Checkout URI | https://github.com/zitongbai/ur5e_vision_assemble.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-07-01 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- xiaobaige
Authors
This package is used for object detection and segmentation
Dependences
First, create a conda env for yolov5 (we recommend python 3.10), e.g.
conda create -n yolo python=3.10
conda activate yolo
Then, in the folder of yolov5, install the requirements:
# in yolov5 path, e.g. src/vision/vision/yolov5
pip install -r requirements.txt
In order to use both python modules in ROS2 and those in conda env, you should change the conda env path mannully in the file src/vision/vision/obj_seg.py
, src/vision/vision/obj_detect.py
, etc.
# you should change the path here according to your conda env
sys.path.append(str(Path.home()) + '/miniforge3/envs/yolo/lib/python3.10/site-packages')
Train the network
Go to the path of yolov5
# make sure you have activated the conda env.
# otherwise:
conda activate yolo
Then train the model.
python segment/train.py --img 960 --batch 8 --epochs 300 --data gazebo_seg.yaml --weights yolov5s-seg.pt --cache
the datasets and weights will be downloaded automatically.
- datasets in
vision/datasets
- weights in
yolov5/yolov5s-seg.pt
Remember to copy the training result (weights) from yolov5/runs/exp*/weights/best.pt
to yolov5
Dependant Packages
Name | Deps |
---|---|
bringup |
Launch files
Messages
Services
Plugins
Recent questions tagged vision at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.0.0 |
License | TODO: License declaration |
Build type | AMENT_PYTHON |
Use | RECOMMENDED |
Repository Summary
Description | Use ROS2 and Gazebo to simulate 2 UR5 assembling objects. |
Checkout URI | https://github.com/zitongbai/ur5e_vision_assemble.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-07-01 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- xiaobaige
Authors
This package is used for object detection and segmentation
Dependences
First, create a conda env for yolov5 (we recommend python 3.10), e.g.
conda create -n yolo python=3.10
conda activate yolo
Then, in the folder of yolov5, install the requirements:
# in yolov5 path, e.g. src/vision/vision/yolov5
pip install -r requirements.txt
In order to use both python modules in ROS2 and those in conda env, you should change the conda env path mannully in the file src/vision/vision/obj_seg.py
, src/vision/vision/obj_detect.py
, etc.
# you should change the path here according to your conda env
sys.path.append(str(Path.home()) + '/miniforge3/envs/yolo/lib/python3.10/site-packages')
Train the network
Go to the path of yolov5
# make sure you have activated the conda env.
# otherwise:
conda activate yolo
Then train the model.
python segment/train.py --img 960 --batch 8 --epochs 300 --data gazebo_seg.yaml --weights yolov5s-seg.pt --cache
the datasets and weights will be downloaded automatically.
- datasets in
vision/datasets
- weights in
yolov5/yolov5s-seg.pt
Remember to copy the training result (weights) from yolov5/runs/exp*/weights/best.pt
to yolov5
Dependant Packages
Name | Deps |
---|---|
bringup |
Launch files
Messages
Services
Plugins
Recent questions tagged vision at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.0.0 |
License | TODO: License declaration |
Build type | AMENT_PYTHON |
Use | RECOMMENDED |
Repository Summary
Description | Use ROS2 and Gazebo to simulate 2 UR5 assembling objects. |
Checkout URI | https://github.com/zitongbai/ur5e_vision_assemble.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-07-01 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- xiaobaige
Authors
This package is used for object detection and segmentation
Dependences
First, create a conda env for yolov5 (we recommend python 3.10), e.g.
conda create -n yolo python=3.10
conda activate yolo
Then, in the folder of yolov5, install the requirements:
# in yolov5 path, e.g. src/vision/vision/yolov5
pip install -r requirements.txt
In order to use both python modules in ROS2 and those in conda env, you should change the conda env path mannully in the file src/vision/vision/obj_seg.py
, src/vision/vision/obj_detect.py
, etc.
# you should change the path here according to your conda env
sys.path.append(str(Path.home()) + '/miniforge3/envs/yolo/lib/python3.10/site-packages')
Train the network
Go to the path of yolov5
# make sure you have activated the conda env.
# otherwise:
conda activate yolo
Then train the model.
python segment/train.py --img 960 --batch 8 --epochs 300 --data gazebo_seg.yaml --weights yolov5s-seg.pt --cache
the datasets and weights will be downloaded automatically.
- datasets in
vision/datasets
- weights in
yolov5/yolov5s-seg.pt
Remember to copy the training result (weights) from yolov5/runs/exp*/weights/best.pt
to yolov5
Dependant Packages
Name | Deps |
---|---|
bringup |
Launch files
Messages
Services
Plugins
Recent questions tagged vision at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.0.0 |
License | TODO: License declaration |
Build type | AMENT_PYTHON |
Use | RECOMMENDED |
Repository Summary
Description | Use ROS2 and Gazebo to simulate 2 UR5 assembling objects. |
Checkout URI | https://github.com/zitongbai/ur5e_vision_assemble.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-07-01 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- xiaobaige
Authors
This package is used for object detection and segmentation
Dependences
First, create a conda env for yolov5 (we recommend python 3.10), e.g.
conda create -n yolo python=3.10
conda activate yolo
Then, in the folder of yolov5, install the requirements:
# in yolov5 path, e.g. src/vision/vision/yolov5
pip install -r requirements.txt
In order to use both python modules in ROS2 and those in conda env, you should change the conda env path mannully in the file src/vision/vision/obj_seg.py
, src/vision/vision/obj_detect.py
, etc.
# you should change the path here according to your conda env
sys.path.append(str(Path.home()) + '/miniforge3/envs/yolo/lib/python3.10/site-packages')
Train the network
Go to the path of yolov5
# make sure you have activated the conda env.
# otherwise:
conda activate yolo
Then train the model.
python segment/train.py --img 960 --batch 8 --epochs 300 --data gazebo_seg.yaml --weights yolov5s-seg.pt --cache
the datasets and weights will be downloaded automatically.
- datasets in
vision/datasets
- weights in
yolov5/yolov5s-seg.pt
Remember to copy the training result (weights) from yolov5/runs/exp*/weights/best.pt
to yolov5
Dependant Packages
Name | Deps |
---|---|
bringup |
Launch files
Messages
Services
Plugins
Recent questions tagged vision at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.0.0 |
License | TODO: License declaration |
Build type | AMENT_PYTHON |
Use | RECOMMENDED |
Repository Summary
Description | Use ROS2 and Gazebo to simulate 2 UR5 assembling objects. |
Checkout URI | https://github.com/zitongbai/ur5e_vision_assemble.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-07-01 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- xiaobaige
Authors
This package is used for object detection and segmentation
Dependences
First, create a conda env for yolov5 (we recommend python 3.10), e.g.
conda create -n yolo python=3.10
conda activate yolo
Then, in the folder of yolov5, install the requirements:
# in yolov5 path, e.g. src/vision/vision/yolov5
pip install -r requirements.txt
In order to use both python modules in ROS2 and those in conda env, you should change the conda env path mannully in the file src/vision/vision/obj_seg.py
, src/vision/vision/obj_detect.py
, etc.
# you should change the path here according to your conda env
sys.path.append(str(Path.home()) + '/miniforge3/envs/yolo/lib/python3.10/site-packages')
Train the network
Go to the path of yolov5
# make sure you have activated the conda env.
# otherwise:
conda activate yolo
Then train the model.
python segment/train.py --img 960 --batch 8 --epochs 300 --data gazebo_seg.yaml --weights yolov5s-seg.pt --cache
the datasets and weights will be downloaded automatically.
- datasets in
vision/datasets
- weights in
yolov5/yolov5s-seg.pt
Remember to copy the training result (weights) from yolov5/runs/exp*/weights/best.pt
to yolov5
Dependant Packages
Name | Deps |
---|---|
bringup |