Package Summary
Tags | No category tags. |
Version | 0.46.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-07-31 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Yukihiro Saito
- Yoshi Ri
- Tao Zhong
- Masato Saeki
- Taekjin Lee
Authors
autoware_traffic_light_classifier
Purpose
autoware_traffic_light_classifier
is a package for classifying traffic light labels using cropped image around a traffic light. This package has two classifier models: cnn_classifier
and hsv_classifier
.
Inner-workings / Algorithms
If height and width of ~/input/rois
is 0
, color, shape, and confidence of ~/output/traffic_signals
become UNKNOWN
, CIRCLE
, and 0.0
.
If ~/input/rois
is judged as backlight, color, shape, and confidence of ~/output/traffic_signals
become UNKNOWN
, UNKNOWN
, and 0.0
.
cnn_classifier
Traffic light labels are classified by EfficientNet-b1 or MobileNet-v2.
We trained classifiers for vehicular signals and pedestrian signals separately.
For vehicular signals, a total of 83400 (58600 for training, 14800 for evaluation and 10000 for test) TIER IV internal images of Japanese traffic lights were used for fine-tuning.
Name | Input Size | Test Accuracy |
---|---|---|
EfficientNet-b1 | 128 x 128 | 99.76% |
MobileNet-v2 | 224 x 224 | 99.81% |
For pedestrian signals, a total of 21199 (17860 for training, 2114 for evaluation and 1225 for test) TIER IV internal images of Japanese traffic lights were used for fine-tuning.
The information of the models is listed here:
Name | Input Size | Test Accuracy |
---|---|---|
EfficientNet-b1 | 128 x 128 | 97.89% |
MobileNet-v2 | 224 x 224 | 99.10% |
hsv_classifier
Traffic light colors (green, yellow and red) are classified in HSV model.
About Label
The message type is designed to comply with the unified road signs proposed at the Vienna Convention. This idea has been also proposed in Autoware.Auto.
There are rules for naming labels that nodes receive. One traffic light is represented by the following character string separated by commas. color1-shape1, color2-shape2
.
For example, the simple red and red cross traffic light label must be expressed as “red-circle, red-cross”.
These colors and shapes are assigned to the message as follows:
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
~/input/image |
sensor_msgs::msg::Image |
input image |
~/input/rois |
tier4_perception_msgs::msg::TrafficLightRoiArray |
rois of traffic lights |
Output
Name | Type | Description |
---|---|---|
~/output/traffic_signals |
tier4_perception_msgs::msg::TrafficLightArray |
classified signals |
~/output/debug/image |
sensor_msgs::msg::Image |
image for debugging |
Parameters
Node Parameters
car_traffic_light_classifier
{{ json_to_markdown(“perception/autoware_traffic_light_classifier/schema/car_traffic_light_classifier.schema.json”) }}
pedestrian_traffic_light_classifier
{{ json_to_markdown(“perception/autoware_traffic_light_classifier/schema/pedestrian_traffic_light_classifier.schema.json”) }}
Core Parameters
cnn_classifier
Including this section
hsv_classifier
Name | Type | Description |
---|---|---|
green_min_h |
int | the minimum hue of green color |
green_min_s |
int | the minimum saturation of green color |
green_min_v |
int | the minimum value (brightness) of green color |
green_max_h |
int | the maximum hue of green color |
green_max_s |
int | the maximum saturation of green color |
green_max_v |
int | the maximum value (brightness) of green color |
yellow_min_h |
int | the minimum hue of yellow color |
yellow_min_s |
int | the minimum saturation of yellow color |
yellow_min_v |
int | the minimum value (brightness) of yellow color |
yellow_max_h |
int | the maximum hue of yellow color |
yellow_max_s |
int | the maximum saturation of yellow color |
yellow_max_v |
int | the maximum value (brightness) of yellow color |
red_min_h |
int | the minimum hue of red color |
red_min_s |
int | the minimum saturation of red color |
red_min_v |
int | the minimum value (brightness) of red color |
red_max_h |
int | the maximum hue of red color |
red_max_s |
int | the maximum saturation of red color |
File truncated at 100 lines see the full file
Changelog for package autoware_traffic_light_classifier
0.46.0 (2025-06-20)
0.45.0 (2025-05-22)
- Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
- chore: update traffic light packages code owner (#10644) chore: add Taekjin Lee as maintainer to multiple perception packages
- Contributors: Taekjin LEE, TaikiYamada4
0.44.2 (2025-06-10)
0.44.1 (2025-05-01)
0.44.0 (2025-04-18)
0.43.0 (2025-03-21)
-
Merge remote-tracking branch 'origin/main' into chore/bump-version-0.43
-
chore: rename from [autoware.universe]{.title-ref} to [autoware_universe]{.title-ref} (#10306)
-
feat(traffic_light_classifier): update diagnostics when harsh backlight is detected (#10218) feat: update diagnostics when harsh backlight is detected
-
chore(perception): refactor perception launch (#10186)
- fundamental change
- style(pre-commit): autofix
- fix typo
- fix params and modify some packages
- pre-commit
- fix
- fix spell check
- fix typo
- integrate model and label path
- style(pre-commit): autofix
- for pre-commit
- run pre-commit
- for awsim
- for simulatior
- style(pre-commit): autofix
- fix grammer in launcher
- add schema for yolox_tlr
- style(pre-commit): autofix
- fix file name
- fix
- rename
- modify arg name to
- fix typo
- change param name
- style(pre-commit): autofix
* chore
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Shintaro Tomie <<58775300+Shin-kyoto@users.noreply.github.com>> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>
-
refactor: add autoware_cuda_dependency_meta (#10073)
-
Contributors: Esteve Fernandez, Hayato Mizushima, Kotaro Uetake, Masato Saeki, Yutaka Kondo
0.42.0 (2025-03-03)
-
Merge remote-tracking branch 'origin/main' into tmp/bot/bump_version_base
-
chore: refine maintainer list (#10110)
- chore: remove Miura from maintainer
* chore: add Taekjin-san to perception_utils package maintainer ---------
-
feat(autoware_traffic_light_classifier): add traffic light classifier schema, README and car and ped launcher (#10048)
- feat(autoware_traffic_light_classifier):Add traffic light classifier schema and README
- add individual launcher
- style(pre-commit): autofix
- fix description
- fix README and source code
- separate schema in README
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Name | Deps |
---|---|
tier4_perception_launch |
Launch files
- launch/car_traffic_light_classifier.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: ~/image_raw]
- input/rois [default: ~/rois]
- output/traffic_signals [default: classified/traffic_signals]
- param_path [default: $(find-pkg-share autoware_traffic_light_classifier)/config/car_traffic_light_classifier.param.yaml]
- model_path [default: $(var data_path)/traffic_light_classifier/traffic_light_classifier_mobilenetv2_batch_6.onnx]
- label_path [default: $(var data_path)/traffic_light_classifier/lamp_labels.txt]
- build_only [default: false]
- launch/pedestrian_traffic_light_classifier.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: ~/image_raw]
- input/rois [default: ~/rois]
- output/traffic_signals [default: classified/traffic_signals]
- param_path [default: $(find-pkg-share autoware_traffic_light_classifier)/config/pedestrian_traffic_light_classifier.param.yaml]
- model_path [default: $(var data_path)/traffic_light_classifier/ped_traffic_light_classifier_mobilenetv2_batch_6.onnx]
- label_path [default: $(var data_path)/traffic_light_classifier/lamp_labels_ped.txt]
- build_only [default: false]
Messages
Services
Plugins
Recent questions tagged autoware_traffic_light_classifier at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.46.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-07-31 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Yukihiro Saito
- Yoshi Ri
- Tao Zhong
- Masato Saeki
- Taekjin Lee
Authors
autoware_traffic_light_classifier
Purpose
autoware_traffic_light_classifier
is a package for classifying traffic light labels using cropped image around a traffic light. This package has two classifier models: cnn_classifier
and hsv_classifier
.
Inner-workings / Algorithms
If height and width of ~/input/rois
is 0
, color, shape, and confidence of ~/output/traffic_signals
become UNKNOWN
, CIRCLE
, and 0.0
.
If ~/input/rois
is judged as backlight, color, shape, and confidence of ~/output/traffic_signals
become UNKNOWN
, UNKNOWN
, and 0.0
.
cnn_classifier
Traffic light labels are classified by EfficientNet-b1 or MobileNet-v2.
We trained classifiers for vehicular signals and pedestrian signals separately.
For vehicular signals, a total of 83400 (58600 for training, 14800 for evaluation and 10000 for test) TIER IV internal images of Japanese traffic lights were used for fine-tuning.
Name | Input Size | Test Accuracy |
---|---|---|
EfficientNet-b1 | 128 x 128 | 99.76% |
MobileNet-v2 | 224 x 224 | 99.81% |
For pedestrian signals, a total of 21199 (17860 for training, 2114 for evaluation and 1225 for test) TIER IV internal images of Japanese traffic lights were used for fine-tuning.
The information of the models is listed here:
Name | Input Size | Test Accuracy |
---|---|---|
EfficientNet-b1 | 128 x 128 | 97.89% |
MobileNet-v2 | 224 x 224 | 99.10% |
hsv_classifier
Traffic light colors (green, yellow and red) are classified in HSV model.
About Label
The message type is designed to comply with the unified road signs proposed at the Vienna Convention. This idea has been also proposed in Autoware.Auto.
There are rules for naming labels that nodes receive. One traffic light is represented by the following character string separated by commas. color1-shape1, color2-shape2
.
For example, the simple red and red cross traffic light label must be expressed as “red-circle, red-cross”.
These colors and shapes are assigned to the message as follows:
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
~/input/image |
sensor_msgs::msg::Image |
input image |
~/input/rois |
tier4_perception_msgs::msg::TrafficLightRoiArray |
rois of traffic lights |
Output
Name | Type | Description |
---|---|---|
~/output/traffic_signals |
tier4_perception_msgs::msg::TrafficLightArray |
classified signals |
~/output/debug/image |
sensor_msgs::msg::Image |
image for debugging |
Parameters
Node Parameters
car_traffic_light_classifier
{{ json_to_markdown(“perception/autoware_traffic_light_classifier/schema/car_traffic_light_classifier.schema.json”) }}
pedestrian_traffic_light_classifier
{{ json_to_markdown(“perception/autoware_traffic_light_classifier/schema/pedestrian_traffic_light_classifier.schema.json”) }}
Core Parameters
cnn_classifier
Including this section
hsv_classifier
Name | Type | Description |
---|---|---|
green_min_h |
int | the minimum hue of green color |
green_min_s |
int | the minimum saturation of green color |
green_min_v |
int | the minimum value (brightness) of green color |
green_max_h |
int | the maximum hue of green color |
green_max_s |
int | the maximum saturation of green color |
green_max_v |
int | the maximum value (brightness) of green color |
yellow_min_h |
int | the minimum hue of yellow color |
yellow_min_s |
int | the minimum saturation of yellow color |
yellow_min_v |
int | the minimum value (brightness) of yellow color |
yellow_max_h |
int | the maximum hue of yellow color |
yellow_max_s |
int | the maximum saturation of yellow color |
yellow_max_v |
int | the maximum value (brightness) of yellow color |
red_min_h |
int | the minimum hue of red color |
red_min_s |
int | the minimum saturation of red color |
red_min_v |
int | the minimum value (brightness) of red color |
red_max_h |
int | the maximum hue of red color |
red_max_s |
int | the maximum saturation of red color |
File truncated at 100 lines see the full file
Changelog for package autoware_traffic_light_classifier
0.46.0 (2025-06-20)
0.45.0 (2025-05-22)
- Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
- chore: update traffic light packages code owner (#10644) chore: add Taekjin Lee as maintainer to multiple perception packages
- Contributors: Taekjin LEE, TaikiYamada4
0.44.2 (2025-06-10)
0.44.1 (2025-05-01)
0.44.0 (2025-04-18)
0.43.0 (2025-03-21)
-
Merge remote-tracking branch 'origin/main' into chore/bump-version-0.43
-
chore: rename from [autoware.universe]{.title-ref} to [autoware_universe]{.title-ref} (#10306)
-
feat(traffic_light_classifier): update diagnostics when harsh backlight is detected (#10218) feat: update diagnostics when harsh backlight is detected
-
chore(perception): refactor perception launch (#10186)
- fundamental change
- style(pre-commit): autofix
- fix typo
- fix params and modify some packages
- pre-commit
- fix
- fix spell check
- fix typo
- integrate model and label path
- style(pre-commit): autofix
- for pre-commit
- run pre-commit
- for awsim
- for simulatior
- style(pre-commit): autofix
- fix grammer in launcher
- add schema for yolox_tlr
- style(pre-commit): autofix
- fix file name
- fix
- rename
- modify arg name to
- fix typo
- change param name
- style(pre-commit): autofix
* chore
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Shintaro Tomie <<58775300+Shin-kyoto@users.noreply.github.com>> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>
-
refactor: add autoware_cuda_dependency_meta (#10073)
-
Contributors: Esteve Fernandez, Hayato Mizushima, Kotaro Uetake, Masato Saeki, Yutaka Kondo
0.42.0 (2025-03-03)
-
Merge remote-tracking branch 'origin/main' into tmp/bot/bump_version_base
-
chore: refine maintainer list (#10110)
- chore: remove Miura from maintainer
* chore: add Taekjin-san to perception_utils package maintainer ---------
-
feat(autoware_traffic_light_classifier): add traffic light classifier schema, README and car and ped launcher (#10048)
- feat(autoware_traffic_light_classifier):Add traffic light classifier schema and README
- add individual launcher
- style(pre-commit): autofix
- fix description
- fix README and source code
- separate schema in README
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Name | Deps |
---|---|
tier4_perception_launch |
Launch files
- launch/car_traffic_light_classifier.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: ~/image_raw]
- input/rois [default: ~/rois]
- output/traffic_signals [default: classified/traffic_signals]
- param_path [default: $(find-pkg-share autoware_traffic_light_classifier)/config/car_traffic_light_classifier.param.yaml]
- model_path [default: $(var data_path)/traffic_light_classifier/traffic_light_classifier_mobilenetv2_batch_6.onnx]
- label_path [default: $(var data_path)/traffic_light_classifier/lamp_labels.txt]
- build_only [default: false]
- launch/pedestrian_traffic_light_classifier.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: ~/image_raw]
- input/rois [default: ~/rois]
- output/traffic_signals [default: classified/traffic_signals]
- param_path [default: $(find-pkg-share autoware_traffic_light_classifier)/config/pedestrian_traffic_light_classifier.param.yaml]
- model_path [default: $(var data_path)/traffic_light_classifier/ped_traffic_light_classifier_mobilenetv2_batch_6.onnx]
- label_path [default: $(var data_path)/traffic_light_classifier/lamp_labels_ped.txt]
- build_only [default: false]
Messages
Services
Plugins
Recent questions tagged autoware_traffic_light_classifier at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.46.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-07-31 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Yukihiro Saito
- Yoshi Ri
- Tao Zhong
- Masato Saeki
- Taekjin Lee
Authors
autoware_traffic_light_classifier
Purpose
autoware_traffic_light_classifier
is a package for classifying traffic light labels using cropped image around a traffic light. This package has two classifier models: cnn_classifier
and hsv_classifier
.
Inner-workings / Algorithms
If height and width of ~/input/rois
is 0
, color, shape, and confidence of ~/output/traffic_signals
become UNKNOWN
, CIRCLE
, and 0.0
.
If ~/input/rois
is judged as backlight, color, shape, and confidence of ~/output/traffic_signals
become UNKNOWN
, UNKNOWN
, and 0.0
.
cnn_classifier
Traffic light labels are classified by EfficientNet-b1 or MobileNet-v2.
We trained classifiers for vehicular signals and pedestrian signals separately.
For vehicular signals, a total of 83400 (58600 for training, 14800 for evaluation and 10000 for test) TIER IV internal images of Japanese traffic lights were used for fine-tuning.
Name | Input Size | Test Accuracy |
---|---|---|
EfficientNet-b1 | 128 x 128 | 99.76% |
MobileNet-v2 | 224 x 224 | 99.81% |
For pedestrian signals, a total of 21199 (17860 for training, 2114 for evaluation and 1225 for test) TIER IV internal images of Japanese traffic lights were used for fine-tuning.
The information of the models is listed here:
Name | Input Size | Test Accuracy |
---|---|---|
EfficientNet-b1 | 128 x 128 | 97.89% |
MobileNet-v2 | 224 x 224 | 99.10% |
hsv_classifier
Traffic light colors (green, yellow and red) are classified in HSV model.
About Label
The message type is designed to comply with the unified road signs proposed at the Vienna Convention. This idea has been also proposed in Autoware.Auto.
There are rules for naming labels that nodes receive. One traffic light is represented by the following character string separated by commas. color1-shape1, color2-shape2
.
For example, the simple red and red cross traffic light label must be expressed as “red-circle, red-cross”.
These colors and shapes are assigned to the message as follows:
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
~/input/image |
sensor_msgs::msg::Image |
input image |
~/input/rois |
tier4_perception_msgs::msg::TrafficLightRoiArray |
rois of traffic lights |
Output
Name | Type | Description |
---|---|---|
~/output/traffic_signals |
tier4_perception_msgs::msg::TrafficLightArray |
classified signals |
~/output/debug/image |
sensor_msgs::msg::Image |
image for debugging |
Parameters
Node Parameters
car_traffic_light_classifier
{{ json_to_markdown(“perception/autoware_traffic_light_classifier/schema/car_traffic_light_classifier.schema.json”) }}
pedestrian_traffic_light_classifier
{{ json_to_markdown(“perception/autoware_traffic_light_classifier/schema/pedestrian_traffic_light_classifier.schema.json”) }}
Core Parameters
cnn_classifier
Including this section
hsv_classifier
Name | Type | Description |
---|---|---|
green_min_h |
int | the minimum hue of green color |
green_min_s |
int | the minimum saturation of green color |
green_min_v |
int | the minimum value (brightness) of green color |
green_max_h |
int | the maximum hue of green color |
green_max_s |
int | the maximum saturation of green color |
green_max_v |
int | the maximum value (brightness) of green color |
yellow_min_h |
int | the minimum hue of yellow color |
yellow_min_s |
int | the minimum saturation of yellow color |
yellow_min_v |
int | the minimum value (brightness) of yellow color |
yellow_max_h |
int | the maximum hue of yellow color |
yellow_max_s |
int | the maximum saturation of yellow color |
yellow_max_v |
int | the maximum value (brightness) of yellow color |
red_min_h |
int | the minimum hue of red color |
red_min_s |
int | the minimum saturation of red color |
red_min_v |
int | the minimum value (brightness) of red color |
red_max_h |
int | the maximum hue of red color |
red_max_s |
int | the maximum saturation of red color |
File truncated at 100 lines see the full file
Changelog for package autoware_traffic_light_classifier
0.46.0 (2025-06-20)
0.45.0 (2025-05-22)
- Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
- chore: update traffic light packages code owner (#10644) chore: add Taekjin Lee as maintainer to multiple perception packages
- Contributors: Taekjin LEE, TaikiYamada4
0.44.2 (2025-06-10)
0.44.1 (2025-05-01)
0.44.0 (2025-04-18)
0.43.0 (2025-03-21)
-
Merge remote-tracking branch 'origin/main' into chore/bump-version-0.43
-
chore: rename from [autoware.universe]{.title-ref} to [autoware_universe]{.title-ref} (#10306)
-
feat(traffic_light_classifier): update diagnostics when harsh backlight is detected (#10218) feat: update diagnostics when harsh backlight is detected
-
chore(perception): refactor perception launch (#10186)
- fundamental change
- style(pre-commit): autofix
- fix typo
- fix params and modify some packages
- pre-commit
- fix
- fix spell check
- fix typo
- integrate model and label path
- style(pre-commit): autofix
- for pre-commit
- run pre-commit
- for awsim
- for simulatior
- style(pre-commit): autofix
- fix grammer in launcher
- add schema for yolox_tlr
- style(pre-commit): autofix
- fix file name
- fix
- rename
- modify arg name to
- fix typo
- change param name
- style(pre-commit): autofix
* chore
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Shintaro Tomie <<58775300+Shin-kyoto@users.noreply.github.com>> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>
-
refactor: add autoware_cuda_dependency_meta (#10073)
-
Contributors: Esteve Fernandez, Hayato Mizushima, Kotaro Uetake, Masato Saeki, Yutaka Kondo
0.42.0 (2025-03-03)
-
Merge remote-tracking branch 'origin/main' into tmp/bot/bump_version_base
-
chore: refine maintainer list (#10110)
- chore: remove Miura from maintainer
* chore: add Taekjin-san to perception_utils package maintainer ---------
-
feat(autoware_traffic_light_classifier): add traffic light classifier schema, README and car and ped launcher (#10048)
- feat(autoware_traffic_light_classifier):Add traffic light classifier schema and README
- add individual launcher
- style(pre-commit): autofix
- fix description
- fix README and source code
- separate schema in README
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Name | Deps |
---|---|
tier4_perception_launch |
Launch files
- launch/car_traffic_light_classifier.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: ~/image_raw]
- input/rois [default: ~/rois]
- output/traffic_signals [default: classified/traffic_signals]
- param_path [default: $(find-pkg-share autoware_traffic_light_classifier)/config/car_traffic_light_classifier.param.yaml]
- model_path [default: $(var data_path)/traffic_light_classifier/traffic_light_classifier_mobilenetv2_batch_6.onnx]
- label_path [default: $(var data_path)/traffic_light_classifier/lamp_labels.txt]
- build_only [default: false]
- launch/pedestrian_traffic_light_classifier.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: ~/image_raw]
- input/rois [default: ~/rois]
- output/traffic_signals [default: classified/traffic_signals]
- param_path [default: $(find-pkg-share autoware_traffic_light_classifier)/config/pedestrian_traffic_light_classifier.param.yaml]
- model_path [default: $(var data_path)/traffic_light_classifier/ped_traffic_light_classifier_mobilenetv2_batch_6.onnx]
- label_path [default: $(var data_path)/traffic_light_classifier/lamp_labels_ped.txt]
- build_only [default: false]
Messages
Services
Plugins
Recent questions tagged autoware_traffic_light_classifier at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.46.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-07-31 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Yukihiro Saito
- Yoshi Ri
- Tao Zhong
- Masato Saeki
- Taekjin Lee
Authors
autoware_traffic_light_classifier
Purpose
autoware_traffic_light_classifier
is a package for classifying traffic light labels using cropped image around a traffic light. This package has two classifier models: cnn_classifier
and hsv_classifier
.
Inner-workings / Algorithms
If height and width of ~/input/rois
is 0
, color, shape, and confidence of ~/output/traffic_signals
become UNKNOWN
, CIRCLE
, and 0.0
.
If ~/input/rois
is judged as backlight, color, shape, and confidence of ~/output/traffic_signals
become UNKNOWN
, UNKNOWN
, and 0.0
.
cnn_classifier
Traffic light labels are classified by EfficientNet-b1 or MobileNet-v2.
We trained classifiers for vehicular signals and pedestrian signals separately.
For vehicular signals, a total of 83400 (58600 for training, 14800 for evaluation and 10000 for test) TIER IV internal images of Japanese traffic lights were used for fine-tuning.
Name | Input Size | Test Accuracy |
---|---|---|
EfficientNet-b1 | 128 x 128 | 99.76% |
MobileNet-v2 | 224 x 224 | 99.81% |
For pedestrian signals, a total of 21199 (17860 for training, 2114 for evaluation and 1225 for test) TIER IV internal images of Japanese traffic lights were used for fine-tuning.
The information of the models is listed here:
Name | Input Size | Test Accuracy |
---|---|---|
EfficientNet-b1 | 128 x 128 | 97.89% |
MobileNet-v2 | 224 x 224 | 99.10% |
hsv_classifier
Traffic light colors (green, yellow and red) are classified in HSV model.
About Label
The message type is designed to comply with the unified road signs proposed at the Vienna Convention. This idea has been also proposed in Autoware.Auto.
There are rules for naming labels that nodes receive. One traffic light is represented by the following character string separated by commas. color1-shape1, color2-shape2
.
For example, the simple red and red cross traffic light label must be expressed as “red-circle, red-cross”.
These colors and shapes are assigned to the message as follows:
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
~/input/image |
sensor_msgs::msg::Image |
input image |
~/input/rois |
tier4_perception_msgs::msg::TrafficLightRoiArray |
rois of traffic lights |
Output
Name | Type | Description |
---|---|---|
~/output/traffic_signals |
tier4_perception_msgs::msg::TrafficLightArray |
classified signals |
~/output/debug/image |
sensor_msgs::msg::Image |
image for debugging |
Parameters
Node Parameters
car_traffic_light_classifier
{{ json_to_markdown(“perception/autoware_traffic_light_classifier/schema/car_traffic_light_classifier.schema.json”) }}
pedestrian_traffic_light_classifier
{{ json_to_markdown(“perception/autoware_traffic_light_classifier/schema/pedestrian_traffic_light_classifier.schema.json”) }}
Core Parameters
cnn_classifier
Including this section
hsv_classifier
Name | Type | Description |
---|---|---|
green_min_h |
int | the minimum hue of green color |
green_min_s |
int | the minimum saturation of green color |
green_min_v |
int | the minimum value (brightness) of green color |
green_max_h |
int | the maximum hue of green color |
green_max_s |
int | the maximum saturation of green color |
green_max_v |
int | the maximum value (brightness) of green color |
yellow_min_h |
int | the minimum hue of yellow color |
yellow_min_s |
int | the minimum saturation of yellow color |
yellow_min_v |
int | the minimum value (brightness) of yellow color |
yellow_max_h |
int | the maximum hue of yellow color |
yellow_max_s |
int | the maximum saturation of yellow color |
yellow_max_v |
int | the maximum value (brightness) of yellow color |
red_min_h |
int | the minimum hue of red color |
red_min_s |
int | the minimum saturation of red color |
red_min_v |
int | the minimum value (brightness) of red color |
red_max_h |
int | the maximum hue of red color |
red_max_s |
int | the maximum saturation of red color |
File truncated at 100 lines see the full file
Changelog for package autoware_traffic_light_classifier
0.46.0 (2025-06-20)
0.45.0 (2025-05-22)
- Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
- chore: update traffic light packages code owner (#10644) chore: add Taekjin Lee as maintainer to multiple perception packages
- Contributors: Taekjin LEE, TaikiYamada4
0.44.2 (2025-06-10)
0.44.1 (2025-05-01)
0.44.0 (2025-04-18)
0.43.0 (2025-03-21)
-
Merge remote-tracking branch 'origin/main' into chore/bump-version-0.43
-
chore: rename from [autoware.universe]{.title-ref} to [autoware_universe]{.title-ref} (#10306)
-
feat(traffic_light_classifier): update diagnostics when harsh backlight is detected (#10218) feat: update diagnostics when harsh backlight is detected
-
chore(perception): refactor perception launch (#10186)
- fundamental change
- style(pre-commit): autofix
- fix typo
- fix params and modify some packages
- pre-commit
- fix
- fix spell check
- fix typo
- integrate model and label path
- style(pre-commit): autofix
- for pre-commit
- run pre-commit
- for awsim
- for simulatior
- style(pre-commit): autofix
- fix grammer in launcher
- add schema for yolox_tlr
- style(pre-commit): autofix
- fix file name
- fix
- rename
- modify arg name to
- fix typo
- change param name
- style(pre-commit): autofix
* chore
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Shintaro Tomie <<58775300+Shin-kyoto@users.noreply.github.com>> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>
-
refactor: add autoware_cuda_dependency_meta (#10073)
-
Contributors: Esteve Fernandez, Hayato Mizushima, Kotaro Uetake, Masato Saeki, Yutaka Kondo
0.42.0 (2025-03-03)
-
Merge remote-tracking branch 'origin/main' into tmp/bot/bump_version_base
-
chore: refine maintainer list (#10110)
- chore: remove Miura from maintainer
* chore: add Taekjin-san to perception_utils package maintainer ---------
-
feat(autoware_traffic_light_classifier): add traffic light classifier schema, README and car and ped launcher (#10048)
- feat(autoware_traffic_light_classifier):Add traffic light classifier schema and README
- add individual launcher
- style(pre-commit): autofix
- fix description
- fix README and source code
- separate schema in README
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Name | Deps |
---|---|
tier4_perception_launch |
Launch files
- launch/car_traffic_light_classifier.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: ~/image_raw]
- input/rois [default: ~/rois]
- output/traffic_signals [default: classified/traffic_signals]
- param_path [default: $(find-pkg-share autoware_traffic_light_classifier)/config/car_traffic_light_classifier.param.yaml]
- model_path [default: $(var data_path)/traffic_light_classifier/traffic_light_classifier_mobilenetv2_batch_6.onnx]
- label_path [default: $(var data_path)/traffic_light_classifier/lamp_labels.txt]
- build_only [default: false]
- launch/pedestrian_traffic_light_classifier.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: ~/image_raw]
- input/rois [default: ~/rois]
- output/traffic_signals [default: classified/traffic_signals]
- param_path [default: $(find-pkg-share autoware_traffic_light_classifier)/config/pedestrian_traffic_light_classifier.param.yaml]
- model_path [default: $(var data_path)/traffic_light_classifier/ped_traffic_light_classifier_mobilenetv2_batch_6.onnx]
- label_path [default: $(var data_path)/traffic_light_classifier/lamp_labels_ped.txt]
- build_only [default: false]
Messages
Services
Plugins
Recent questions tagged autoware_traffic_light_classifier at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.46.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-07-31 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Yukihiro Saito
- Yoshi Ri
- Tao Zhong
- Masato Saeki
- Taekjin Lee
Authors
autoware_traffic_light_classifier
Purpose
autoware_traffic_light_classifier
is a package for classifying traffic light labels using cropped image around a traffic light. This package has two classifier models: cnn_classifier
and hsv_classifier
.
Inner-workings / Algorithms
If height and width of ~/input/rois
is 0
, color, shape, and confidence of ~/output/traffic_signals
become UNKNOWN
, CIRCLE
, and 0.0
.
If ~/input/rois
is judged as backlight, color, shape, and confidence of ~/output/traffic_signals
become UNKNOWN
, UNKNOWN
, and 0.0
.
cnn_classifier
Traffic light labels are classified by EfficientNet-b1 or MobileNet-v2.
We trained classifiers for vehicular signals and pedestrian signals separately.
For vehicular signals, a total of 83400 (58600 for training, 14800 for evaluation and 10000 for test) TIER IV internal images of Japanese traffic lights were used for fine-tuning.
Name | Input Size | Test Accuracy |
---|---|---|
EfficientNet-b1 | 128 x 128 | 99.76% |
MobileNet-v2 | 224 x 224 | 99.81% |
For pedestrian signals, a total of 21199 (17860 for training, 2114 for evaluation and 1225 for test) TIER IV internal images of Japanese traffic lights were used for fine-tuning.
The information of the models is listed here:
Name | Input Size | Test Accuracy |
---|---|---|
EfficientNet-b1 | 128 x 128 | 97.89% |
MobileNet-v2 | 224 x 224 | 99.10% |
hsv_classifier
Traffic light colors (green, yellow and red) are classified in HSV model.
About Label
The message type is designed to comply with the unified road signs proposed at the Vienna Convention. This idea has been also proposed in Autoware.Auto.
There are rules for naming labels that nodes receive. One traffic light is represented by the following character string separated by commas. color1-shape1, color2-shape2
.
For example, the simple red and red cross traffic light label must be expressed as “red-circle, red-cross”.
These colors and shapes are assigned to the message as follows:
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
~/input/image |
sensor_msgs::msg::Image |
input image |
~/input/rois |
tier4_perception_msgs::msg::TrafficLightRoiArray |
rois of traffic lights |
Output
Name | Type | Description |
---|---|---|
~/output/traffic_signals |
tier4_perception_msgs::msg::TrafficLightArray |
classified signals |
~/output/debug/image |
sensor_msgs::msg::Image |
image for debugging |
Parameters
Node Parameters
car_traffic_light_classifier
{{ json_to_markdown(“perception/autoware_traffic_light_classifier/schema/car_traffic_light_classifier.schema.json”) }}
pedestrian_traffic_light_classifier
{{ json_to_markdown(“perception/autoware_traffic_light_classifier/schema/pedestrian_traffic_light_classifier.schema.json”) }}
Core Parameters
cnn_classifier
Including this section
hsv_classifier
Name | Type | Description |
---|---|---|
green_min_h |
int | the minimum hue of green color |
green_min_s |
int | the minimum saturation of green color |
green_min_v |
int | the minimum value (brightness) of green color |
green_max_h |
int | the maximum hue of green color |
green_max_s |
int | the maximum saturation of green color |
green_max_v |
int | the maximum value (brightness) of green color |
yellow_min_h |
int | the minimum hue of yellow color |
yellow_min_s |
int | the minimum saturation of yellow color |
yellow_min_v |
int | the minimum value (brightness) of yellow color |
yellow_max_h |
int | the maximum hue of yellow color |
yellow_max_s |
int | the maximum saturation of yellow color |
yellow_max_v |
int | the maximum value (brightness) of yellow color |
red_min_h |
int | the minimum hue of red color |
red_min_s |
int | the minimum saturation of red color |
red_min_v |
int | the minimum value (brightness) of red color |
red_max_h |
int | the maximum hue of red color |
red_max_s |
int | the maximum saturation of red color |
File truncated at 100 lines see the full file
Changelog for package autoware_traffic_light_classifier
0.46.0 (2025-06-20)
0.45.0 (2025-05-22)
- Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
- chore: update traffic light packages code owner (#10644) chore: add Taekjin Lee as maintainer to multiple perception packages
- Contributors: Taekjin LEE, TaikiYamada4
0.44.2 (2025-06-10)
0.44.1 (2025-05-01)
0.44.0 (2025-04-18)
0.43.0 (2025-03-21)
-
Merge remote-tracking branch 'origin/main' into chore/bump-version-0.43
-
chore: rename from [autoware.universe]{.title-ref} to [autoware_universe]{.title-ref} (#10306)
-
feat(traffic_light_classifier): update diagnostics when harsh backlight is detected (#10218) feat: update diagnostics when harsh backlight is detected
-
chore(perception): refactor perception launch (#10186)
- fundamental change
- style(pre-commit): autofix
- fix typo
- fix params and modify some packages
- pre-commit
- fix
- fix spell check
- fix typo
- integrate model and label path
- style(pre-commit): autofix
- for pre-commit
- run pre-commit
- for awsim
- for simulatior
- style(pre-commit): autofix
- fix grammer in launcher
- add schema for yolox_tlr
- style(pre-commit): autofix
- fix file name
- fix
- rename
- modify arg name to
- fix typo
- change param name
- style(pre-commit): autofix
* chore
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Shintaro Tomie <<58775300+Shin-kyoto@users.noreply.github.com>> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>
-
refactor: add autoware_cuda_dependency_meta (#10073)
-
Contributors: Esteve Fernandez, Hayato Mizushima, Kotaro Uetake, Masato Saeki, Yutaka Kondo
0.42.0 (2025-03-03)
-
Merge remote-tracking branch 'origin/main' into tmp/bot/bump_version_base
-
chore: refine maintainer list (#10110)
- chore: remove Miura from maintainer
* chore: add Taekjin-san to perception_utils package maintainer ---------
-
feat(autoware_traffic_light_classifier): add traffic light classifier schema, README and car and ped launcher (#10048)
- feat(autoware_traffic_light_classifier):Add traffic light classifier schema and README
- add individual launcher
- style(pre-commit): autofix
- fix description
- fix README and source code
- separate schema in README
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Name | Deps |
---|---|
tier4_perception_launch |
Launch files
- launch/car_traffic_light_classifier.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: ~/image_raw]
- input/rois [default: ~/rois]
- output/traffic_signals [default: classified/traffic_signals]
- param_path [default: $(find-pkg-share autoware_traffic_light_classifier)/config/car_traffic_light_classifier.param.yaml]
- model_path [default: $(var data_path)/traffic_light_classifier/traffic_light_classifier_mobilenetv2_batch_6.onnx]
- label_path [default: $(var data_path)/traffic_light_classifier/lamp_labels.txt]
- build_only [default: false]
- launch/pedestrian_traffic_light_classifier.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: ~/image_raw]
- input/rois [default: ~/rois]
- output/traffic_signals [default: classified/traffic_signals]
- param_path [default: $(find-pkg-share autoware_traffic_light_classifier)/config/pedestrian_traffic_light_classifier.param.yaml]
- model_path [default: $(var data_path)/traffic_light_classifier/ped_traffic_light_classifier_mobilenetv2_batch_6.onnx]
- label_path [default: $(var data_path)/traffic_light_classifier/lamp_labels_ped.txt]
- build_only [default: false]
Messages
Services
Plugins
Recent questions tagged autoware_traffic_light_classifier at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.46.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-07-31 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Yukihiro Saito
- Yoshi Ri
- Tao Zhong
- Masato Saeki
- Taekjin Lee
Authors
autoware_traffic_light_classifier
Purpose
autoware_traffic_light_classifier
is a package for classifying traffic light labels using cropped image around a traffic light. This package has two classifier models: cnn_classifier
and hsv_classifier
.
Inner-workings / Algorithms
If height and width of ~/input/rois
is 0
, color, shape, and confidence of ~/output/traffic_signals
become UNKNOWN
, CIRCLE
, and 0.0
.
If ~/input/rois
is judged as backlight, color, shape, and confidence of ~/output/traffic_signals
become UNKNOWN
, UNKNOWN
, and 0.0
.
cnn_classifier
Traffic light labels are classified by EfficientNet-b1 or MobileNet-v2.
We trained classifiers for vehicular signals and pedestrian signals separately.
For vehicular signals, a total of 83400 (58600 for training, 14800 for evaluation and 10000 for test) TIER IV internal images of Japanese traffic lights were used for fine-tuning.
Name | Input Size | Test Accuracy |
---|---|---|
EfficientNet-b1 | 128 x 128 | 99.76% |
MobileNet-v2 | 224 x 224 | 99.81% |
For pedestrian signals, a total of 21199 (17860 for training, 2114 for evaluation and 1225 for test) TIER IV internal images of Japanese traffic lights were used for fine-tuning.
The information of the models is listed here:
Name | Input Size | Test Accuracy |
---|---|---|
EfficientNet-b1 | 128 x 128 | 97.89% |
MobileNet-v2 | 224 x 224 | 99.10% |
hsv_classifier
Traffic light colors (green, yellow and red) are classified in HSV model.
About Label
The message type is designed to comply with the unified road signs proposed at the Vienna Convention. This idea has been also proposed in Autoware.Auto.
There are rules for naming labels that nodes receive. One traffic light is represented by the following character string separated by commas. color1-shape1, color2-shape2
.
For example, the simple red and red cross traffic light label must be expressed as “red-circle, red-cross”.
These colors and shapes are assigned to the message as follows:
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
~/input/image |
sensor_msgs::msg::Image |
input image |
~/input/rois |
tier4_perception_msgs::msg::TrafficLightRoiArray |
rois of traffic lights |
Output
Name | Type | Description |
---|---|---|
~/output/traffic_signals |
tier4_perception_msgs::msg::TrafficLightArray |
classified signals |
~/output/debug/image |
sensor_msgs::msg::Image |
image for debugging |
Parameters
Node Parameters
car_traffic_light_classifier
{{ json_to_markdown(“perception/autoware_traffic_light_classifier/schema/car_traffic_light_classifier.schema.json”) }}
pedestrian_traffic_light_classifier
{{ json_to_markdown(“perception/autoware_traffic_light_classifier/schema/pedestrian_traffic_light_classifier.schema.json”) }}
Core Parameters
cnn_classifier
Including this section
hsv_classifier
Name | Type | Description |
---|---|---|
green_min_h |
int | the minimum hue of green color |
green_min_s |
int | the minimum saturation of green color |
green_min_v |
int | the minimum value (brightness) of green color |
green_max_h |
int | the maximum hue of green color |
green_max_s |
int | the maximum saturation of green color |
green_max_v |
int | the maximum value (brightness) of green color |
yellow_min_h |
int | the minimum hue of yellow color |
yellow_min_s |
int | the minimum saturation of yellow color |
yellow_min_v |
int | the minimum value (brightness) of yellow color |
yellow_max_h |
int | the maximum hue of yellow color |
yellow_max_s |
int | the maximum saturation of yellow color |
yellow_max_v |
int | the maximum value (brightness) of yellow color |
red_min_h |
int | the minimum hue of red color |
red_min_s |
int | the minimum saturation of red color |
red_min_v |
int | the minimum value (brightness) of red color |
red_max_h |
int | the maximum hue of red color |
red_max_s |
int | the maximum saturation of red color |
File truncated at 100 lines see the full file
Changelog for package autoware_traffic_light_classifier
0.46.0 (2025-06-20)
0.45.0 (2025-05-22)
- Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
- chore: update traffic light packages code owner (#10644) chore: add Taekjin Lee as maintainer to multiple perception packages
- Contributors: Taekjin LEE, TaikiYamada4
0.44.2 (2025-06-10)
0.44.1 (2025-05-01)
0.44.0 (2025-04-18)
0.43.0 (2025-03-21)
-
Merge remote-tracking branch 'origin/main' into chore/bump-version-0.43
-
chore: rename from [autoware.universe]{.title-ref} to [autoware_universe]{.title-ref} (#10306)
-
feat(traffic_light_classifier): update diagnostics when harsh backlight is detected (#10218) feat: update diagnostics when harsh backlight is detected
-
chore(perception): refactor perception launch (#10186)
- fundamental change
- style(pre-commit): autofix
- fix typo
- fix params and modify some packages
- pre-commit
- fix
- fix spell check
- fix typo
- integrate model and label path
- style(pre-commit): autofix
- for pre-commit
- run pre-commit
- for awsim
- for simulatior
- style(pre-commit): autofix
- fix grammer in launcher
- add schema for yolox_tlr
- style(pre-commit): autofix
- fix file name
- fix
- rename
- modify arg name to
- fix typo
- change param name
- style(pre-commit): autofix
* chore
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Shintaro Tomie <<58775300+Shin-kyoto@users.noreply.github.com>> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>
-
refactor: add autoware_cuda_dependency_meta (#10073)
-
Contributors: Esteve Fernandez, Hayato Mizushima, Kotaro Uetake, Masato Saeki, Yutaka Kondo
0.42.0 (2025-03-03)
-
Merge remote-tracking branch 'origin/main' into tmp/bot/bump_version_base
-
chore: refine maintainer list (#10110)
- chore: remove Miura from maintainer
* chore: add Taekjin-san to perception_utils package maintainer ---------
-
feat(autoware_traffic_light_classifier): add traffic light classifier schema, README and car and ped launcher (#10048)
- feat(autoware_traffic_light_classifier):Add traffic light classifier schema and README
- add individual launcher
- style(pre-commit): autofix
- fix description
- fix README and source code
- separate schema in README
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Name | Deps |
---|---|
tier4_perception_launch |
Launch files
- launch/car_traffic_light_classifier.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: ~/image_raw]
- input/rois [default: ~/rois]
- output/traffic_signals [default: classified/traffic_signals]
- param_path [default: $(find-pkg-share autoware_traffic_light_classifier)/config/car_traffic_light_classifier.param.yaml]
- model_path [default: $(var data_path)/traffic_light_classifier/traffic_light_classifier_mobilenetv2_batch_6.onnx]
- label_path [default: $(var data_path)/traffic_light_classifier/lamp_labels.txt]
- build_only [default: false]
- launch/pedestrian_traffic_light_classifier.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: ~/image_raw]
- input/rois [default: ~/rois]
- output/traffic_signals [default: classified/traffic_signals]
- param_path [default: $(find-pkg-share autoware_traffic_light_classifier)/config/pedestrian_traffic_light_classifier.param.yaml]
- model_path [default: $(var data_path)/traffic_light_classifier/ped_traffic_light_classifier_mobilenetv2_batch_6.onnx]
- label_path [default: $(var data_path)/traffic_light_classifier/lamp_labels_ped.txt]
- build_only [default: false]
Messages
Services
Plugins
Recent questions tagged autoware_traffic_light_classifier at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.46.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-07-31 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Yukihiro Saito
- Yoshi Ri
- Tao Zhong
- Masato Saeki
- Taekjin Lee
Authors
autoware_traffic_light_classifier
Purpose
autoware_traffic_light_classifier
is a package for classifying traffic light labels using cropped image around a traffic light. This package has two classifier models: cnn_classifier
and hsv_classifier
.
Inner-workings / Algorithms
If height and width of ~/input/rois
is 0
, color, shape, and confidence of ~/output/traffic_signals
become UNKNOWN
, CIRCLE
, and 0.0
.
If ~/input/rois
is judged as backlight, color, shape, and confidence of ~/output/traffic_signals
become UNKNOWN
, UNKNOWN
, and 0.0
.
cnn_classifier
Traffic light labels are classified by EfficientNet-b1 or MobileNet-v2.
We trained classifiers for vehicular signals and pedestrian signals separately.
For vehicular signals, a total of 83400 (58600 for training, 14800 for evaluation and 10000 for test) TIER IV internal images of Japanese traffic lights were used for fine-tuning.
Name | Input Size | Test Accuracy |
---|---|---|
EfficientNet-b1 | 128 x 128 | 99.76% |
MobileNet-v2 | 224 x 224 | 99.81% |
For pedestrian signals, a total of 21199 (17860 for training, 2114 for evaluation and 1225 for test) TIER IV internal images of Japanese traffic lights were used for fine-tuning.
The information of the models is listed here:
Name | Input Size | Test Accuracy |
---|---|---|
EfficientNet-b1 | 128 x 128 | 97.89% |
MobileNet-v2 | 224 x 224 | 99.10% |
hsv_classifier
Traffic light colors (green, yellow and red) are classified in HSV model.
About Label
The message type is designed to comply with the unified road signs proposed at the Vienna Convention. This idea has been also proposed in Autoware.Auto.
There are rules for naming labels that nodes receive. One traffic light is represented by the following character string separated by commas. color1-shape1, color2-shape2
.
For example, the simple red and red cross traffic light label must be expressed as “red-circle, red-cross”.
These colors and shapes are assigned to the message as follows:
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
~/input/image |
sensor_msgs::msg::Image |
input image |
~/input/rois |
tier4_perception_msgs::msg::TrafficLightRoiArray |
rois of traffic lights |
Output
Name | Type | Description |
---|---|---|
~/output/traffic_signals |
tier4_perception_msgs::msg::TrafficLightArray |
classified signals |
~/output/debug/image |
sensor_msgs::msg::Image |
image for debugging |
Parameters
Node Parameters
car_traffic_light_classifier
{{ json_to_markdown(“perception/autoware_traffic_light_classifier/schema/car_traffic_light_classifier.schema.json”) }}
pedestrian_traffic_light_classifier
{{ json_to_markdown(“perception/autoware_traffic_light_classifier/schema/pedestrian_traffic_light_classifier.schema.json”) }}
Core Parameters
cnn_classifier
Including this section
hsv_classifier
Name | Type | Description |
---|---|---|
green_min_h |
int | the minimum hue of green color |
green_min_s |
int | the minimum saturation of green color |
green_min_v |
int | the minimum value (brightness) of green color |
green_max_h |
int | the maximum hue of green color |
green_max_s |
int | the maximum saturation of green color |
green_max_v |
int | the maximum value (brightness) of green color |
yellow_min_h |
int | the minimum hue of yellow color |
yellow_min_s |
int | the minimum saturation of yellow color |
yellow_min_v |
int | the minimum value (brightness) of yellow color |
yellow_max_h |
int | the maximum hue of yellow color |
yellow_max_s |
int | the maximum saturation of yellow color |
yellow_max_v |
int | the maximum value (brightness) of yellow color |
red_min_h |
int | the minimum hue of red color |
red_min_s |
int | the minimum saturation of red color |
red_min_v |
int | the minimum value (brightness) of red color |
red_max_h |
int | the maximum hue of red color |
red_max_s |
int | the maximum saturation of red color |
File truncated at 100 lines see the full file
Changelog for package autoware_traffic_light_classifier
0.46.0 (2025-06-20)
0.45.0 (2025-05-22)
- Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
- chore: update traffic light packages code owner (#10644) chore: add Taekjin Lee as maintainer to multiple perception packages
- Contributors: Taekjin LEE, TaikiYamada4
0.44.2 (2025-06-10)
0.44.1 (2025-05-01)
0.44.0 (2025-04-18)
0.43.0 (2025-03-21)
-
Merge remote-tracking branch 'origin/main' into chore/bump-version-0.43
-
chore: rename from [autoware.universe]{.title-ref} to [autoware_universe]{.title-ref} (#10306)
-
feat(traffic_light_classifier): update diagnostics when harsh backlight is detected (#10218) feat: update diagnostics when harsh backlight is detected
-
chore(perception): refactor perception launch (#10186)
- fundamental change
- style(pre-commit): autofix
- fix typo
- fix params and modify some packages
- pre-commit
- fix
- fix spell check
- fix typo
- integrate model and label path
- style(pre-commit): autofix
- for pre-commit
- run pre-commit
- for awsim
- for simulatior
- style(pre-commit): autofix
- fix grammer in launcher
- add schema for yolox_tlr
- style(pre-commit): autofix
- fix file name
- fix
- rename
- modify arg name to
- fix typo
- change param name
- style(pre-commit): autofix
* chore
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Shintaro Tomie <<58775300+Shin-kyoto@users.noreply.github.com>> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>
-
refactor: add autoware_cuda_dependency_meta (#10073)
-
Contributors: Esteve Fernandez, Hayato Mizushima, Kotaro Uetake, Masato Saeki, Yutaka Kondo
0.42.0 (2025-03-03)
-
Merge remote-tracking branch 'origin/main' into tmp/bot/bump_version_base
-
chore: refine maintainer list (#10110)
- chore: remove Miura from maintainer
* chore: add Taekjin-san to perception_utils package maintainer ---------
-
feat(autoware_traffic_light_classifier): add traffic light classifier schema, README and car and ped launcher (#10048)
- feat(autoware_traffic_light_classifier):Add traffic light classifier schema and README
- add individual launcher
- style(pre-commit): autofix
- fix description
- fix README and source code
- separate schema in README
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Name | Deps |
---|---|
tier4_perception_launch |
Launch files
- launch/car_traffic_light_classifier.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: ~/image_raw]
- input/rois [default: ~/rois]
- output/traffic_signals [default: classified/traffic_signals]
- param_path [default: $(find-pkg-share autoware_traffic_light_classifier)/config/car_traffic_light_classifier.param.yaml]
- model_path [default: $(var data_path)/traffic_light_classifier/traffic_light_classifier_mobilenetv2_batch_6.onnx]
- label_path [default: $(var data_path)/traffic_light_classifier/lamp_labels.txt]
- build_only [default: false]
- launch/pedestrian_traffic_light_classifier.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: ~/image_raw]
- input/rois [default: ~/rois]
- output/traffic_signals [default: classified/traffic_signals]
- param_path [default: $(find-pkg-share autoware_traffic_light_classifier)/config/pedestrian_traffic_light_classifier.param.yaml]
- model_path [default: $(var data_path)/traffic_light_classifier/ped_traffic_light_classifier_mobilenetv2_batch_6.onnx]
- label_path [default: $(var data_path)/traffic_light_classifier/lamp_labels_ped.txt]
- build_only [default: false]
Messages
Services
Plugins
Recent questions tagged autoware_traffic_light_classifier at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.46.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-07-31 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Yukihiro Saito
- Yoshi Ri
- Tao Zhong
- Masato Saeki
- Taekjin Lee
Authors
autoware_traffic_light_classifier
Purpose
autoware_traffic_light_classifier
is a package for classifying traffic light labels using cropped image around a traffic light. This package has two classifier models: cnn_classifier
and hsv_classifier
.
Inner-workings / Algorithms
If height and width of ~/input/rois
is 0
, color, shape, and confidence of ~/output/traffic_signals
become UNKNOWN
, CIRCLE
, and 0.0
.
If ~/input/rois
is judged as backlight, color, shape, and confidence of ~/output/traffic_signals
become UNKNOWN
, UNKNOWN
, and 0.0
.
cnn_classifier
Traffic light labels are classified by EfficientNet-b1 or MobileNet-v2.
We trained classifiers for vehicular signals and pedestrian signals separately.
For vehicular signals, a total of 83400 (58600 for training, 14800 for evaluation and 10000 for test) TIER IV internal images of Japanese traffic lights were used for fine-tuning.
Name | Input Size | Test Accuracy |
---|---|---|
EfficientNet-b1 | 128 x 128 | 99.76% |
MobileNet-v2 | 224 x 224 | 99.81% |
For pedestrian signals, a total of 21199 (17860 for training, 2114 for evaluation and 1225 for test) TIER IV internal images of Japanese traffic lights were used for fine-tuning.
The information of the models is listed here:
Name | Input Size | Test Accuracy |
---|---|---|
EfficientNet-b1 | 128 x 128 | 97.89% |
MobileNet-v2 | 224 x 224 | 99.10% |
hsv_classifier
Traffic light colors (green, yellow and red) are classified in HSV model.
About Label
The message type is designed to comply with the unified road signs proposed at the Vienna Convention. This idea has been also proposed in Autoware.Auto.
There are rules for naming labels that nodes receive. One traffic light is represented by the following character string separated by commas. color1-shape1, color2-shape2
.
For example, the simple red and red cross traffic light label must be expressed as “red-circle, red-cross”.
These colors and shapes are assigned to the message as follows:
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
~/input/image |
sensor_msgs::msg::Image |
input image |
~/input/rois |
tier4_perception_msgs::msg::TrafficLightRoiArray |
rois of traffic lights |
Output
Name | Type | Description |
---|---|---|
~/output/traffic_signals |
tier4_perception_msgs::msg::TrafficLightArray |
classified signals |
~/output/debug/image |
sensor_msgs::msg::Image |
image for debugging |
Parameters
Node Parameters
car_traffic_light_classifier
{{ json_to_markdown(“perception/autoware_traffic_light_classifier/schema/car_traffic_light_classifier.schema.json”) }}
pedestrian_traffic_light_classifier
{{ json_to_markdown(“perception/autoware_traffic_light_classifier/schema/pedestrian_traffic_light_classifier.schema.json”) }}
Core Parameters
cnn_classifier
Including this section
hsv_classifier
Name | Type | Description |
---|---|---|
green_min_h |
int | the minimum hue of green color |
green_min_s |
int | the minimum saturation of green color |
green_min_v |
int | the minimum value (brightness) of green color |
green_max_h |
int | the maximum hue of green color |
green_max_s |
int | the maximum saturation of green color |
green_max_v |
int | the maximum value (brightness) of green color |
yellow_min_h |
int | the minimum hue of yellow color |
yellow_min_s |
int | the minimum saturation of yellow color |
yellow_min_v |
int | the minimum value (brightness) of yellow color |
yellow_max_h |
int | the maximum hue of yellow color |
yellow_max_s |
int | the maximum saturation of yellow color |
yellow_max_v |
int | the maximum value (brightness) of yellow color |
red_min_h |
int | the minimum hue of red color |
red_min_s |
int | the minimum saturation of red color |
red_min_v |
int | the minimum value (brightness) of red color |
red_max_h |
int | the maximum hue of red color |
red_max_s |
int | the maximum saturation of red color |
File truncated at 100 lines see the full file
Changelog for package autoware_traffic_light_classifier
0.46.0 (2025-06-20)
0.45.0 (2025-05-22)
- Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
- chore: update traffic light packages code owner (#10644) chore: add Taekjin Lee as maintainer to multiple perception packages
- Contributors: Taekjin LEE, TaikiYamada4
0.44.2 (2025-06-10)
0.44.1 (2025-05-01)
0.44.0 (2025-04-18)
0.43.0 (2025-03-21)
-
Merge remote-tracking branch 'origin/main' into chore/bump-version-0.43
-
chore: rename from [autoware.universe]{.title-ref} to [autoware_universe]{.title-ref} (#10306)
-
feat(traffic_light_classifier): update diagnostics when harsh backlight is detected (#10218) feat: update diagnostics when harsh backlight is detected
-
chore(perception): refactor perception launch (#10186)
- fundamental change
- style(pre-commit): autofix
- fix typo
- fix params and modify some packages
- pre-commit
- fix
- fix spell check
- fix typo
- integrate model and label path
- style(pre-commit): autofix
- for pre-commit
- run pre-commit
- for awsim
- for simulatior
- style(pre-commit): autofix
- fix grammer in launcher
- add schema for yolox_tlr
- style(pre-commit): autofix
- fix file name
- fix
- rename
- modify arg name to
- fix typo
- change param name
- style(pre-commit): autofix
* chore
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Shintaro Tomie <<58775300+Shin-kyoto@users.noreply.github.com>> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>
-
refactor: add autoware_cuda_dependency_meta (#10073)
-
Contributors: Esteve Fernandez, Hayato Mizushima, Kotaro Uetake, Masato Saeki, Yutaka Kondo
0.42.0 (2025-03-03)
-
Merge remote-tracking branch 'origin/main' into tmp/bot/bump_version_base
-
chore: refine maintainer list (#10110)
- chore: remove Miura from maintainer
* chore: add Taekjin-san to perception_utils package maintainer ---------
-
feat(autoware_traffic_light_classifier): add traffic light classifier schema, README and car and ped launcher (#10048)
- feat(autoware_traffic_light_classifier):Add traffic light classifier schema and README
- add individual launcher
- style(pre-commit): autofix
- fix description
- fix README and source code
- separate schema in README
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Name | Deps |
---|---|
tier4_perception_launch |
Launch files
- launch/car_traffic_light_classifier.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: ~/image_raw]
- input/rois [default: ~/rois]
- output/traffic_signals [default: classified/traffic_signals]
- param_path [default: $(find-pkg-share autoware_traffic_light_classifier)/config/car_traffic_light_classifier.param.yaml]
- model_path [default: $(var data_path)/traffic_light_classifier/traffic_light_classifier_mobilenetv2_batch_6.onnx]
- label_path [default: $(var data_path)/traffic_light_classifier/lamp_labels.txt]
- build_only [default: false]
- launch/pedestrian_traffic_light_classifier.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: ~/image_raw]
- input/rois [default: ~/rois]
- output/traffic_signals [default: classified/traffic_signals]
- param_path [default: $(find-pkg-share autoware_traffic_light_classifier)/config/pedestrian_traffic_light_classifier.param.yaml]
- model_path [default: $(var data_path)/traffic_light_classifier/ped_traffic_light_classifier_mobilenetv2_batch_6.onnx]
- label_path [default: $(var data_path)/traffic_light_classifier/lamp_labels_ped.txt]
- build_only [default: false]
Messages
Services
Plugins
Recent questions tagged autoware_traffic_light_classifier at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.46.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-07-31 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Yukihiro Saito
- Yoshi Ri
- Tao Zhong
- Masato Saeki
- Taekjin Lee
Authors
autoware_traffic_light_classifier
Purpose
autoware_traffic_light_classifier
is a package for classifying traffic light labels using cropped image around a traffic light. This package has two classifier models: cnn_classifier
and hsv_classifier
.
Inner-workings / Algorithms
If height and width of ~/input/rois
is 0
, color, shape, and confidence of ~/output/traffic_signals
become UNKNOWN
, CIRCLE
, and 0.0
.
If ~/input/rois
is judged as backlight, color, shape, and confidence of ~/output/traffic_signals
become UNKNOWN
, UNKNOWN
, and 0.0
.
cnn_classifier
Traffic light labels are classified by EfficientNet-b1 or MobileNet-v2.
We trained classifiers for vehicular signals and pedestrian signals separately.
For vehicular signals, a total of 83400 (58600 for training, 14800 for evaluation and 10000 for test) TIER IV internal images of Japanese traffic lights were used for fine-tuning.
Name | Input Size | Test Accuracy |
---|---|---|
EfficientNet-b1 | 128 x 128 | 99.76% |
MobileNet-v2 | 224 x 224 | 99.81% |
For pedestrian signals, a total of 21199 (17860 for training, 2114 for evaluation and 1225 for test) TIER IV internal images of Japanese traffic lights were used for fine-tuning.
The information of the models is listed here:
Name | Input Size | Test Accuracy |
---|---|---|
EfficientNet-b1 | 128 x 128 | 97.89% |
MobileNet-v2 | 224 x 224 | 99.10% |
hsv_classifier
Traffic light colors (green, yellow and red) are classified in HSV model.
About Label
The message type is designed to comply with the unified road signs proposed at the Vienna Convention. This idea has been also proposed in Autoware.Auto.
There are rules for naming labels that nodes receive. One traffic light is represented by the following character string separated by commas. color1-shape1, color2-shape2
.
For example, the simple red and red cross traffic light label must be expressed as “red-circle, red-cross”.
These colors and shapes are assigned to the message as follows:
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
~/input/image |
sensor_msgs::msg::Image |
input image |
~/input/rois |
tier4_perception_msgs::msg::TrafficLightRoiArray |
rois of traffic lights |
Output
Name | Type | Description |
---|---|---|
~/output/traffic_signals |
tier4_perception_msgs::msg::TrafficLightArray |
classified signals |
~/output/debug/image |
sensor_msgs::msg::Image |
image for debugging |
Parameters
Node Parameters
car_traffic_light_classifier
{{ json_to_markdown(“perception/autoware_traffic_light_classifier/schema/car_traffic_light_classifier.schema.json”) }}
pedestrian_traffic_light_classifier
{{ json_to_markdown(“perception/autoware_traffic_light_classifier/schema/pedestrian_traffic_light_classifier.schema.json”) }}
Core Parameters
cnn_classifier
Including this section
hsv_classifier
Name | Type | Description |
---|---|---|
green_min_h |
int | the minimum hue of green color |
green_min_s |
int | the minimum saturation of green color |
green_min_v |
int | the minimum value (brightness) of green color |
green_max_h |
int | the maximum hue of green color |
green_max_s |
int | the maximum saturation of green color |
green_max_v |
int | the maximum value (brightness) of green color |
yellow_min_h |
int | the minimum hue of yellow color |
yellow_min_s |
int | the minimum saturation of yellow color |
yellow_min_v |
int | the minimum value (brightness) of yellow color |
yellow_max_h |
int | the maximum hue of yellow color |
yellow_max_s |
int | the maximum saturation of yellow color |
yellow_max_v |
int | the maximum value (brightness) of yellow color |
red_min_h |
int | the minimum hue of red color |
red_min_s |
int | the minimum saturation of red color |
red_min_v |
int | the minimum value (brightness) of red color |
red_max_h |
int | the maximum hue of red color |
red_max_s |
int | the maximum saturation of red color |
File truncated at 100 lines see the full file
Changelog for package autoware_traffic_light_classifier
0.46.0 (2025-06-20)
0.45.0 (2025-05-22)
- Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
- chore: update traffic light packages code owner (#10644) chore: add Taekjin Lee as maintainer to multiple perception packages
- Contributors: Taekjin LEE, TaikiYamada4
0.44.2 (2025-06-10)
0.44.1 (2025-05-01)
0.44.0 (2025-04-18)
0.43.0 (2025-03-21)
-
Merge remote-tracking branch 'origin/main' into chore/bump-version-0.43
-
chore: rename from [autoware.universe]{.title-ref} to [autoware_universe]{.title-ref} (#10306)
-
feat(traffic_light_classifier): update diagnostics when harsh backlight is detected (#10218) feat: update diagnostics when harsh backlight is detected
-
chore(perception): refactor perception launch (#10186)
- fundamental change
- style(pre-commit): autofix
- fix typo
- fix params and modify some packages
- pre-commit
- fix
- fix spell check
- fix typo
- integrate model and label path
- style(pre-commit): autofix
- for pre-commit
- run pre-commit
- for awsim
- for simulatior
- style(pre-commit): autofix
- fix grammer in launcher
- add schema for yolox_tlr
- style(pre-commit): autofix
- fix file name
- fix
- rename
- modify arg name to
- fix typo
- change param name
- style(pre-commit): autofix
* chore
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Shintaro Tomie <<58775300+Shin-kyoto@users.noreply.github.com>> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>
-
refactor: add autoware_cuda_dependency_meta (#10073)
-
Contributors: Esteve Fernandez, Hayato Mizushima, Kotaro Uetake, Masato Saeki, Yutaka Kondo
0.42.0 (2025-03-03)
-
Merge remote-tracking branch 'origin/main' into tmp/bot/bump_version_base
-
chore: refine maintainer list (#10110)
- chore: remove Miura from maintainer
* chore: add Taekjin-san to perception_utils package maintainer ---------
-
feat(autoware_traffic_light_classifier): add traffic light classifier schema, README and car and ped launcher (#10048)
- feat(autoware_traffic_light_classifier):Add traffic light classifier schema and README
- add individual launcher
- style(pre-commit): autofix
- fix description
- fix README and source code
- separate schema in README
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Name | Deps |
---|---|
tier4_perception_launch |
Launch files
- launch/car_traffic_light_classifier.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: ~/image_raw]
- input/rois [default: ~/rois]
- output/traffic_signals [default: classified/traffic_signals]
- param_path [default: $(find-pkg-share autoware_traffic_light_classifier)/config/car_traffic_light_classifier.param.yaml]
- model_path [default: $(var data_path)/traffic_light_classifier/traffic_light_classifier_mobilenetv2_batch_6.onnx]
- label_path [default: $(var data_path)/traffic_light_classifier/lamp_labels.txt]
- build_only [default: false]
- launch/pedestrian_traffic_light_classifier.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: ~/image_raw]
- input/rois [default: ~/rois]
- output/traffic_signals [default: classified/traffic_signals]
- param_path [default: $(find-pkg-share autoware_traffic_light_classifier)/config/pedestrian_traffic_light_classifier.param.yaml]
- model_path [default: $(var data_path)/traffic_light_classifier/ped_traffic_light_classifier_mobilenetv2_batch_6.onnx]
- label_path [default: $(var data_path)/traffic_light_classifier/lamp_labels_ped.txt]
- build_only [default: false]