Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- amc-nu
- Yukihiro Saito
- Kyoichi Sugahara
- Dai Nguyen
- Kenzo Lobos-Tsunekawa
- Yihsiang Fang
- Yoshi Ri
- David Wong
- Melike Tanrikulu
- Max Schmeller
- Kaan Colak
Authors
- Open Perception
- Julius Kammerl
- William Woodall
autoware_pointcloud_preprocessor
Purpose
The autoware_pointcloud_preprocessor
is a package that includes the following filters:
- removing outlier points
- cropping
- concatenating pointclouds
- correcting distortion
- downsampling
- densifying pointclouds
Inner-workings / Algorithms
Detail description of each filter’s algorithm is in the following links.
Filter Name | Description | Detail |
---|---|---|
concatenate_data | subscribe multiple pointclouds and concatenate them into a pointcloud | link |
crop_box_filter | remove points within a given box | link |
distortion_corrector | compensate pointcloud distortion caused by ego vehicle’s movement during 1 scan | link |
downsample_filter | downsampling input pointcloud | link |
outlier_filter | remove points caused by hardware problems, rain drops and small insects as a noise | link |
passthrough_filter | remove points on the outside of a range in given field (e.g. x, y, z, intensity) | link |
pointcloud_accumulator | accumulate pointclouds for a given amount of time | link |
pointcloud_densifier | enhance sparse point clouds by using information from previous frames | link |
vector_map_filter | remove points on the outside of lane by using vector map | link |
vector_map_inside_area_filter | remove points inside of vector map area that has given type by parameter | link |
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
~/input/points |
sensor_msgs::msg::PointCloud2 |
reference points |
~/input/indices |
pcl_msgs::msg::Indices |
reference indices |
Output
Name | Type | Description |
---|---|---|
~/output/points |
sensor_msgs::msg::PointCloud2 |
filtered points |
Parameters
Node Parameters
Name | Type | Default Value | Description |
---|---|---|---|
input_frame |
string | ” “ | input frame id |
output_frame |
string | ” “ | output frame id |
max_queue_size |
int | 5 | max queue size of input/output topics |
use_indices |
bool | false | flag to use pointcloud indices |
latched_indices |
bool | false | flag to latch pointcloud indices |
approximate_sync |
bool | false | flag to use approximate sync option |
Assumptions / Known limits
autoware::pointcloud_preprocessor::Filter
is implemented based on pcl_perception [1] because
of this issue.
Measuring the performance
In Autoware, point cloud data from each LiDAR sensor undergoes preprocessing in the sensing pipeline before being input into the perception pipeline. The preprocessing stages are illustrated in the diagram below:
Each stage in the pipeline incurs a processing delay. Mostly, we’ve used ros2 topic delay /topic_name
to measure
the time between the message header and the current time. This approach works well for small-sized messages. However,
when dealing with large point cloud messages, this method introduces an additional delay. This is primarily because
accessing these large point cloud messages externally impacts the pipeline’s performance.
Our sensing/perception nodes are designed to run within composable node containers, leveraging intra-process communication. External subscriptions to these messages (like using ros2 topic delay or rviz2) impose extra delays and can even slow down the pipeline by subscribing externally. Therefore, these measurements will not be accurate.
To mitigate this issue, we’ve adopted a method where each node in the pipeline reports its pipeline latency time. This approach ensures the integrity of intra-process communication and provides a more accurate measure of delays in the pipeline.
Benchmarking The Pipeline
The nodes within the pipeline report the pipeline latency time, indicating the duration from the sensor driver’s pointcloud output to the node’s output. This data is crucial for assessing the pipeline’s health and efficiency.
When running Autoware, you can monitor the pipeline latency times for each node in the pipeline by subscribing to the following ROS 2 topics:
/sensing/lidar/LidarX/crop_box_filter_self/debug/pipeline_latency_ms
/sensing/lidar/LidarX/crop_box_filter_mirror/debug/pipeline_latency_ms
/sensing/lidar/LidarX/distortion_corrector/debug/pipeline_latency_ms
/sensing/lidar/LidarX/ring_outlier_filter/debug/pipeline_latency_ms
/sensing/lidar/concatenate_data_synchronizer/debug/sensing/lidar/LidarX/pointcloud/pipeline_latency_ms
These topics provide the pipeline latency times, giving insights into the delays at various stages of the pipeline from the sensor output of LidarX to each subsequent node.
File truncated at 100 lines see the full file
Changelog for package autoware_pointcloud_preprocessor
0.47.0 (2025-08-11)
-
refactor(pointcloud_preprocessor): extract downsample logic from pickup_based_voxel_downsample_filter (#11098)
- feat(pointcloud_preprocessor): add voxel size struct and downsampling function to pickup based filter
- refactor(pointcloud_preprocessor): use point_cloud2_iterator to handle pointcloud
- refactor(pointcloud_preprocessor): pass VoxelSize by const reference to improve performance
- feat(pointcloud_preprocessor): enhance voxel grid downsampling tests with additional scenarios
- feat(pointcloud_preprocessor): refactor downsampling logic to extract unique voxel point indices and copy filtered points
- fix(pointcloud_preprocessor): optimize voxel point index extraction and memory copying in downsampling
- refactor(pointcloud_preprocessor): rename voxel_map to index_map for clarity in downsampling functions
- refactor(pointcloud_preprocessor): remove unused includes
- chore(pointcloud_preprocessor): apply clang-format and cpplint
- chore(pointcloud_preprocessor): fix linter error
- style(pre-commit): autofix
- style(poincloud_preprocessor): adjust clang-format directives for consistency
- fix(pointcloud_preprocessor): correct function name from copy_filtered_point to copy_filtered_points
- fix(pointcloud_preprocessor): update parameter type from ConstSharedPtr to reference
* refactor(pointcloud_preprocessor): consolidate voxel size parameters into a single struct ---------Co-authored-by: Takahisa.Ishikawa <<takahisa.ishikawa@tier4.jp>> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info (#10851)
- feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info
- style(pre-commit): autofix
- feat(autoware_cuda_pointcloud_preprocessor): handle concatenated pointcloud meta info
- feat(autoware_pointcloud_preprocessor): serialized config of matching strategy
- feat(autoware_pointcloud_preprocessor): update msg
- feat(autoware_pointcloud_preprocessor): update msg (2)
- docs(autoware_pointcloud_preprocessor): add cloud info topic description
- feat(autoware_pointcloud_preprocessor): add unit tests for cloud info
- fix(autoware_pointcloud_preprocessor): pre-commit
- fix(autoware_pointcloud_preprocessor): remove *_struct headers inclusion
- fix(autoware_pointcloud_preprocessor): check if the matching strategy cannot be enumerated
- test(autoware_pointcloud_preprocessor): full cloud repr
- feat(autoware_pointcloud_preprocessor): auto success set & more unit tests
- feat(autoware_pointcloud_preprocessor): publish info regardless cloud content
- style(autoware_pointcloud_preprocessor): typo
- feat(autoware_pointcloud_preprocessor): make update_concatenated_point_cloud_config static for easier integration
* docs(autoware_pointcloud_preprocessor): typo Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>
- fix(autoware_pointcloud_preprocessor): publish cloud info out of condition block
- fix(autoware_pointcloud_preprocessor): container access with safe bound checking
- style(autoware_pointcloud_preprocessor): unify naming convention (part 1 - content)
- style(autoware_pointcloud_preprocessor): unify naming convention (part 2 - files name)
- style(autoware_pointcloud_preprocessor): naming convention for main API
- doc(autoware_pointcloud_preprocessor): add docstring
* feat(autoware_pointcloud_preprocessor): add remap to launch files ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>
-
fix(pointcloud_preprocessor): handle empty pointclouds in pickup_based_downsample_filter (#11003)
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Launch files
- launch/approximate_downsample_filter.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/approximate_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- approximate_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/approximate_downsample_filter_node.param.yaml]
- launch/blockage_diag_node.launch.xml
-
- input_topic_name [default: pointcloud_raw_ex]
- output_topic_name [default: blockage_diag/pointcloud]
- blockage_diagnostics_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/blockage_diag_node.param.yaml]
- launch/concatenate_and_time_sync_node.launch.xml
-
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- output [default: /sensing/lidar/concatenated/pointcloud]
- output_info [default: /sensing/lidar/concatenated/pointcloud_info]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_and_time_sync_node.param.yaml]
- launch/concatenate_pointcloud.launch.xml
-
- output [default: /sensing/lidar/concatenated/pointcloud]
- output_info [default: /sensing/lidar/concatenated/pointcloud_info]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_pointclouds.param.yaml]
- launch/crop_box_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/self_cropped/pointcloud_ex]
- input_frame [default: base_link]
- output_frame [default: base_link]
- crop_box_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/crop_box_filter_node.param.yaml]
- launch/distortion_corrector_node.launch.xml
-
- input/pointcloud [default: /sensing/lidar/top/mirror_cropped/pointcloud_ex]
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- input/imu [default: /sensing/imu/imu_data]
- output/pointcloud [default: /sensing/lidar/top/rectified/pointcloud_ex]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/distortion_corrector_node.param.yaml]
- launch/dual_return_outlier_filter_node.launch.xml
-
- input_topic_name [default: /pointcloud]
- output_topic_name [default: /pointcloud_filtered]
- input_frame [default: ]
- output_frame [default: ]
- dual_return_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/dual_return_outlier_filter_node.param.yaml]
- launch/lanelet2_map_filter_node.launch.xml
-
- input_vector_map [default: /map/vector_map]
- input_pointcloud [default: detection_area/pointcloud]
- output_pointcloud [default: vector_map_filtered/pointcloud]
- lanelet2_map_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/lanelet2_map_filter_node.param.yaml]
- launch/pickup_based_voxel_grid_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/pickup_based_voxel_grid_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- pickup_based_voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pickup_based_voxel_grid_downsample_filter_node.param.yaml]
- launch/pointcloud_accumulator_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud]
- output_topic_name [default: /sensing/lidar/top/pointcloud_accumulated]
- input_frame [default: base_link]
- output_frame [default: base_link]
- pointcloud_accumulator_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pointcloud_accumulator_node.param.yaml]
- launch/preprocessor.launch.xml
-
- input_points_raw_list [default: ['/points_raw']]
- output_points_raw [default: /points_raw/cropbox/filtered]
- tf_output_frame [default: base_link]
- launch/radius_search_2d_outlier_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/pointcloud_filtered]
- input_frame [default: base_link]
- output_frame [default: base_link]
- radius_search_2d_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/radius_search_2d_outlier_filter_node.param.yaml]
- launch/random_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/random_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- random_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/random_downsample_filter_node.param.yaml]
- launch/ring_outlier_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/pointcloud_ring_filtered]
- input_frame [default: ]
- output_frame [default: ]
- ring_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/ring_outlier_filter_node.param.yaml]
- launch/ring_passthrough_filter.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/ring_passthrough_filtered/pointcloud]
- input_frame [default: ]
- output_frame [default: base_link]
- passthrough_filter_uint16_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/passthrough_filter_uint16_node.param.yaml]
- launch/time_synchronizer_node.launch.xml
-
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/time_synchronizer_node.param.yaml]
- launch/vector_map_inside_area_filter_node.launch.xml
-
- input_vector_map [default: /map/vector_map]
- input_pointcloud [default: compare_map_filtered/pointcloud]
- output_pointcloud [default: vector_map_inside_area_filtered/pointcloud]
- vector_map_inside_area_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/vector_map_inside_area_filter_node.param.yaml]
- launch/voxel_grid_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/voxel_grid_downsample_filter/pointcloud]
- input_frame [default: base_link]
- output_frame [default: base_link]
- voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_downsample_filter_node.param.yaml]
- launch/voxel_grid_outlier_filter_node.launch.xml
-
- input_topic_name [default: /pointcloud_raw]
- output_topic_name [default: /pointcloud_filtered]
- input_frame [default: ]
- output_frame [default: ]
- voxel_grid_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_outlier_filter_node.param.yaml]
Messages
Services
Plugins
Recent questions tagged autoware_pointcloud_preprocessor at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- amc-nu
- Yukihiro Saito
- Kyoichi Sugahara
- Dai Nguyen
- Kenzo Lobos-Tsunekawa
- Yihsiang Fang
- Yoshi Ri
- David Wong
- Melike Tanrikulu
- Max Schmeller
- Kaan Colak
Authors
- Open Perception
- Julius Kammerl
- William Woodall
autoware_pointcloud_preprocessor
Purpose
The autoware_pointcloud_preprocessor
is a package that includes the following filters:
- removing outlier points
- cropping
- concatenating pointclouds
- correcting distortion
- downsampling
- densifying pointclouds
Inner-workings / Algorithms
Detail description of each filter’s algorithm is in the following links.
Filter Name | Description | Detail |
---|---|---|
concatenate_data | subscribe multiple pointclouds and concatenate them into a pointcloud | link |
crop_box_filter | remove points within a given box | link |
distortion_corrector | compensate pointcloud distortion caused by ego vehicle’s movement during 1 scan | link |
downsample_filter | downsampling input pointcloud | link |
outlier_filter | remove points caused by hardware problems, rain drops and small insects as a noise | link |
passthrough_filter | remove points on the outside of a range in given field (e.g. x, y, z, intensity) | link |
pointcloud_accumulator | accumulate pointclouds for a given amount of time | link |
pointcloud_densifier | enhance sparse point clouds by using information from previous frames | link |
vector_map_filter | remove points on the outside of lane by using vector map | link |
vector_map_inside_area_filter | remove points inside of vector map area that has given type by parameter | link |
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
~/input/points |
sensor_msgs::msg::PointCloud2 |
reference points |
~/input/indices |
pcl_msgs::msg::Indices |
reference indices |
Output
Name | Type | Description |
---|---|---|
~/output/points |
sensor_msgs::msg::PointCloud2 |
filtered points |
Parameters
Node Parameters
Name | Type | Default Value | Description |
---|---|---|---|
input_frame |
string | ” “ | input frame id |
output_frame |
string | ” “ | output frame id |
max_queue_size |
int | 5 | max queue size of input/output topics |
use_indices |
bool | false | flag to use pointcloud indices |
latched_indices |
bool | false | flag to latch pointcloud indices |
approximate_sync |
bool | false | flag to use approximate sync option |
Assumptions / Known limits
autoware::pointcloud_preprocessor::Filter
is implemented based on pcl_perception [1] because
of this issue.
Measuring the performance
In Autoware, point cloud data from each LiDAR sensor undergoes preprocessing in the sensing pipeline before being input into the perception pipeline. The preprocessing stages are illustrated in the diagram below:
Each stage in the pipeline incurs a processing delay. Mostly, we’ve used ros2 topic delay /topic_name
to measure
the time between the message header and the current time. This approach works well for small-sized messages. However,
when dealing with large point cloud messages, this method introduces an additional delay. This is primarily because
accessing these large point cloud messages externally impacts the pipeline’s performance.
Our sensing/perception nodes are designed to run within composable node containers, leveraging intra-process communication. External subscriptions to these messages (like using ros2 topic delay or rviz2) impose extra delays and can even slow down the pipeline by subscribing externally. Therefore, these measurements will not be accurate.
To mitigate this issue, we’ve adopted a method where each node in the pipeline reports its pipeline latency time. This approach ensures the integrity of intra-process communication and provides a more accurate measure of delays in the pipeline.
Benchmarking The Pipeline
The nodes within the pipeline report the pipeline latency time, indicating the duration from the sensor driver’s pointcloud output to the node’s output. This data is crucial for assessing the pipeline’s health and efficiency.
When running Autoware, you can monitor the pipeline latency times for each node in the pipeline by subscribing to the following ROS 2 topics:
/sensing/lidar/LidarX/crop_box_filter_self/debug/pipeline_latency_ms
/sensing/lidar/LidarX/crop_box_filter_mirror/debug/pipeline_latency_ms
/sensing/lidar/LidarX/distortion_corrector/debug/pipeline_latency_ms
/sensing/lidar/LidarX/ring_outlier_filter/debug/pipeline_latency_ms
/sensing/lidar/concatenate_data_synchronizer/debug/sensing/lidar/LidarX/pointcloud/pipeline_latency_ms
These topics provide the pipeline latency times, giving insights into the delays at various stages of the pipeline from the sensor output of LidarX to each subsequent node.
File truncated at 100 lines see the full file
Changelog for package autoware_pointcloud_preprocessor
0.47.0 (2025-08-11)
-
refactor(pointcloud_preprocessor): extract downsample logic from pickup_based_voxel_downsample_filter (#11098)
- feat(pointcloud_preprocessor): add voxel size struct and downsampling function to pickup based filter
- refactor(pointcloud_preprocessor): use point_cloud2_iterator to handle pointcloud
- refactor(pointcloud_preprocessor): pass VoxelSize by const reference to improve performance
- feat(pointcloud_preprocessor): enhance voxel grid downsampling tests with additional scenarios
- feat(pointcloud_preprocessor): refactor downsampling logic to extract unique voxel point indices and copy filtered points
- fix(pointcloud_preprocessor): optimize voxel point index extraction and memory copying in downsampling
- refactor(pointcloud_preprocessor): rename voxel_map to index_map for clarity in downsampling functions
- refactor(pointcloud_preprocessor): remove unused includes
- chore(pointcloud_preprocessor): apply clang-format and cpplint
- chore(pointcloud_preprocessor): fix linter error
- style(pre-commit): autofix
- style(poincloud_preprocessor): adjust clang-format directives for consistency
- fix(pointcloud_preprocessor): correct function name from copy_filtered_point to copy_filtered_points
- fix(pointcloud_preprocessor): update parameter type from ConstSharedPtr to reference
* refactor(pointcloud_preprocessor): consolidate voxel size parameters into a single struct ---------Co-authored-by: Takahisa.Ishikawa <<takahisa.ishikawa@tier4.jp>> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info (#10851)
- feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info
- style(pre-commit): autofix
- feat(autoware_cuda_pointcloud_preprocessor): handle concatenated pointcloud meta info
- feat(autoware_pointcloud_preprocessor): serialized config of matching strategy
- feat(autoware_pointcloud_preprocessor): update msg
- feat(autoware_pointcloud_preprocessor): update msg (2)
- docs(autoware_pointcloud_preprocessor): add cloud info topic description
- feat(autoware_pointcloud_preprocessor): add unit tests for cloud info
- fix(autoware_pointcloud_preprocessor): pre-commit
- fix(autoware_pointcloud_preprocessor): remove *_struct headers inclusion
- fix(autoware_pointcloud_preprocessor): check if the matching strategy cannot be enumerated
- test(autoware_pointcloud_preprocessor): full cloud repr
- feat(autoware_pointcloud_preprocessor): auto success set & more unit tests
- feat(autoware_pointcloud_preprocessor): publish info regardless cloud content
- style(autoware_pointcloud_preprocessor): typo
- feat(autoware_pointcloud_preprocessor): make update_concatenated_point_cloud_config static for easier integration
* docs(autoware_pointcloud_preprocessor): typo Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>
- fix(autoware_pointcloud_preprocessor): publish cloud info out of condition block
- fix(autoware_pointcloud_preprocessor): container access with safe bound checking
- style(autoware_pointcloud_preprocessor): unify naming convention (part 1 - content)
- style(autoware_pointcloud_preprocessor): unify naming convention (part 2 - files name)
- style(autoware_pointcloud_preprocessor): naming convention for main API
- doc(autoware_pointcloud_preprocessor): add docstring
* feat(autoware_pointcloud_preprocessor): add remap to launch files ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>
-
fix(pointcloud_preprocessor): handle empty pointclouds in pickup_based_downsample_filter (#11003)
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Launch files
- launch/approximate_downsample_filter.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/approximate_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- approximate_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/approximate_downsample_filter_node.param.yaml]
- launch/blockage_diag_node.launch.xml
-
- input_topic_name [default: pointcloud_raw_ex]
- output_topic_name [default: blockage_diag/pointcloud]
- blockage_diagnostics_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/blockage_diag_node.param.yaml]
- launch/concatenate_and_time_sync_node.launch.xml
-
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- output [default: /sensing/lidar/concatenated/pointcloud]
- output_info [default: /sensing/lidar/concatenated/pointcloud_info]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_and_time_sync_node.param.yaml]
- launch/concatenate_pointcloud.launch.xml
-
- output [default: /sensing/lidar/concatenated/pointcloud]
- output_info [default: /sensing/lidar/concatenated/pointcloud_info]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_pointclouds.param.yaml]
- launch/crop_box_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/self_cropped/pointcloud_ex]
- input_frame [default: base_link]
- output_frame [default: base_link]
- crop_box_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/crop_box_filter_node.param.yaml]
- launch/distortion_corrector_node.launch.xml
-
- input/pointcloud [default: /sensing/lidar/top/mirror_cropped/pointcloud_ex]
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- input/imu [default: /sensing/imu/imu_data]
- output/pointcloud [default: /sensing/lidar/top/rectified/pointcloud_ex]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/distortion_corrector_node.param.yaml]
- launch/dual_return_outlier_filter_node.launch.xml
-
- input_topic_name [default: /pointcloud]
- output_topic_name [default: /pointcloud_filtered]
- input_frame [default: ]
- output_frame [default: ]
- dual_return_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/dual_return_outlier_filter_node.param.yaml]
- launch/lanelet2_map_filter_node.launch.xml
-
- input_vector_map [default: /map/vector_map]
- input_pointcloud [default: detection_area/pointcloud]
- output_pointcloud [default: vector_map_filtered/pointcloud]
- lanelet2_map_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/lanelet2_map_filter_node.param.yaml]
- launch/pickup_based_voxel_grid_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/pickup_based_voxel_grid_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- pickup_based_voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pickup_based_voxel_grid_downsample_filter_node.param.yaml]
- launch/pointcloud_accumulator_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud]
- output_topic_name [default: /sensing/lidar/top/pointcloud_accumulated]
- input_frame [default: base_link]
- output_frame [default: base_link]
- pointcloud_accumulator_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pointcloud_accumulator_node.param.yaml]
- launch/preprocessor.launch.xml
-
- input_points_raw_list [default: ['/points_raw']]
- output_points_raw [default: /points_raw/cropbox/filtered]
- tf_output_frame [default: base_link]
- launch/radius_search_2d_outlier_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/pointcloud_filtered]
- input_frame [default: base_link]
- output_frame [default: base_link]
- radius_search_2d_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/radius_search_2d_outlier_filter_node.param.yaml]
- launch/random_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/random_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- random_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/random_downsample_filter_node.param.yaml]
- launch/ring_outlier_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/pointcloud_ring_filtered]
- input_frame [default: ]
- output_frame [default: ]
- ring_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/ring_outlier_filter_node.param.yaml]
- launch/ring_passthrough_filter.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/ring_passthrough_filtered/pointcloud]
- input_frame [default: ]
- output_frame [default: base_link]
- passthrough_filter_uint16_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/passthrough_filter_uint16_node.param.yaml]
- launch/time_synchronizer_node.launch.xml
-
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/time_synchronizer_node.param.yaml]
- launch/vector_map_inside_area_filter_node.launch.xml
-
- input_vector_map [default: /map/vector_map]
- input_pointcloud [default: compare_map_filtered/pointcloud]
- output_pointcloud [default: vector_map_inside_area_filtered/pointcloud]
- vector_map_inside_area_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/vector_map_inside_area_filter_node.param.yaml]
- launch/voxel_grid_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/voxel_grid_downsample_filter/pointcloud]
- input_frame [default: base_link]
- output_frame [default: base_link]
- voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_downsample_filter_node.param.yaml]
- launch/voxel_grid_outlier_filter_node.launch.xml
-
- input_topic_name [default: /pointcloud_raw]
- output_topic_name [default: /pointcloud_filtered]
- input_frame [default: ]
- output_frame [default: ]
- voxel_grid_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_outlier_filter_node.param.yaml]
Messages
Services
Plugins
Recent questions tagged autoware_pointcloud_preprocessor at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- amc-nu
- Yukihiro Saito
- Kyoichi Sugahara
- Dai Nguyen
- Kenzo Lobos-Tsunekawa
- Yihsiang Fang
- Yoshi Ri
- David Wong
- Melike Tanrikulu
- Max Schmeller
- Kaan Colak
Authors
- Open Perception
- Julius Kammerl
- William Woodall
autoware_pointcloud_preprocessor
Purpose
The autoware_pointcloud_preprocessor
is a package that includes the following filters:
- removing outlier points
- cropping
- concatenating pointclouds
- correcting distortion
- downsampling
- densifying pointclouds
Inner-workings / Algorithms
Detail description of each filter’s algorithm is in the following links.
Filter Name | Description | Detail |
---|---|---|
concatenate_data | subscribe multiple pointclouds and concatenate them into a pointcloud | link |
crop_box_filter | remove points within a given box | link |
distortion_corrector | compensate pointcloud distortion caused by ego vehicle’s movement during 1 scan | link |
downsample_filter | downsampling input pointcloud | link |
outlier_filter | remove points caused by hardware problems, rain drops and small insects as a noise | link |
passthrough_filter | remove points on the outside of a range in given field (e.g. x, y, z, intensity) | link |
pointcloud_accumulator | accumulate pointclouds for a given amount of time | link |
pointcloud_densifier | enhance sparse point clouds by using information from previous frames | link |
vector_map_filter | remove points on the outside of lane by using vector map | link |
vector_map_inside_area_filter | remove points inside of vector map area that has given type by parameter | link |
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
~/input/points |
sensor_msgs::msg::PointCloud2 |
reference points |
~/input/indices |
pcl_msgs::msg::Indices |
reference indices |
Output
Name | Type | Description |
---|---|---|
~/output/points |
sensor_msgs::msg::PointCloud2 |
filtered points |
Parameters
Node Parameters
Name | Type | Default Value | Description |
---|---|---|---|
input_frame |
string | ” “ | input frame id |
output_frame |
string | ” “ | output frame id |
max_queue_size |
int | 5 | max queue size of input/output topics |
use_indices |
bool | false | flag to use pointcloud indices |
latched_indices |
bool | false | flag to latch pointcloud indices |
approximate_sync |
bool | false | flag to use approximate sync option |
Assumptions / Known limits
autoware::pointcloud_preprocessor::Filter
is implemented based on pcl_perception [1] because
of this issue.
Measuring the performance
In Autoware, point cloud data from each LiDAR sensor undergoes preprocessing in the sensing pipeline before being input into the perception pipeline. The preprocessing stages are illustrated in the diagram below:
Each stage in the pipeline incurs a processing delay. Mostly, we’ve used ros2 topic delay /topic_name
to measure
the time between the message header and the current time. This approach works well for small-sized messages. However,
when dealing with large point cloud messages, this method introduces an additional delay. This is primarily because
accessing these large point cloud messages externally impacts the pipeline’s performance.
Our sensing/perception nodes are designed to run within composable node containers, leveraging intra-process communication. External subscriptions to these messages (like using ros2 topic delay or rviz2) impose extra delays and can even slow down the pipeline by subscribing externally. Therefore, these measurements will not be accurate.
To mitigate this issue, we’ve adopted a method where each node in the pipeline reports its pipeline latency time. This approach ensures the integrity of intra-process communication and provides a more accurate measure of delays in the pipeline.
Benchmarking The Pipeline
The nodes within the pipeline report the pipeline latency time, indicating the duration from the sensor driver’s pointcloud output to the node’s output. This data is crucial for assessing the pipeline’s health and efficiency.
When running Autoware, you can monitor the pipeline latency times for each node in the pipeline by subscribing to the following ROS 2 topics:
/sensing/lidar/LidarX/crop_box_filter_self/debug/pipeline_latency_ms
/sensing/lidar/LidarX/crop_box_filter_mirror/debug/pipeline_latency_ms
/sensing/lidar/LidarX/distortion_corrector/debug/pipeline_latency_ms
/sensing/lidar/LidarX/ring_outlier_filter/debug/pipeline_latency_ms
/sensing/lidar/concatenate_data_synchronizer/debug/sensing/lidar/LidarX/pointcloud/pipeline_latency_ms
These topics provide the pipeline latency times, giving insights into the delays at various stages of the pipeline from the sensor output of LidarX to each subsequent node.
File truncated at 100 lines see the full file
Changelog for package autoware_pointcloud_preprocessor
0.47.0 (2025-08-11)
-
refactor(pointcloud_preprocessor): extract downsample logic from pickup_based_voxel_downsample_filter (#11098)
- feat(pointcloud_preprocessor): add voxel size struct and downsampling function to pickup based filter
- refactor(pointcloud_preprocessor): use point_cloud2_iterator to handle pointcloud
- refactor(pointcloud_preprocessor): pass VoxelSize by const reference to improve performance
- feat(pointcloud_preprocessor): enhance voxel grid downsampling tests with additional scenarios
- feat(pointcloud_preprocessor): refactor downsampling logic to extract unique voxel point indices and copy filtered points
- fix(pointcloud_preprocessor): optimize voxel point index extraction and memory copying in downsampling
- refactor(pointcloud_preprocessor): rename voxel_map to index_map for clarity in downsampling functions
- refactor(pointcloud_preprocessor): remove unused includes
- chore(pointcloud_preprocessor): apply clang-format and cpplint
- chore(pointcloud_preprocessor): fix linter error
- style(pre-commit): autofix
- style(poincloud_preprocessor): adjust clang-format directives for consistency
- fix(pointcloud_preprocessor): correct function name from copy_filtered_point to copy_filtered_points
- fix(pointcloud_preprocessor): update parameter type from ConstSharedPtr to reference
* refactor(pointcloud_preprocessor): consolidate voxel size parameters into a single struct ---------Co-authored-by: Takahisa.Ishikawa <<takahisa.ishikawa@tier4.jp>> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info (#10851)
- feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info
- style(pre-commit): autofix
- feat(autoware_cuda_pointcloud_preprocessor): handle concatenated pointcloud meta info
- feat(autoware_pointcloud_preprocessor): serialized config of matching strategy
- feat(autoware_pointcloud_preprocessor): update msg
- feat(autoware_pointcloud_preprocessor): update msg (2)
- docs(autoware_pointcloud_preprocessor): add cloud info topic description
- feat(autoware_pointcloud_preprocessor): add unit tests for cloud info
- fix(autoware_pointcloud_preprocessor): pre-commit
- fix(autoware_pointcloud_preprocessor): remove *_struct headers inclusion
- fix(autoware_pointcloud_preprocessor): check if the matching strategy cannot be enumerated
- test(autoware_pointcloud_preprocessor): full cloud repr
- feat(autoware_pointcloud_preprocessor): auto success set & more unit tests
- feat(autoware_pointcloud_preprocessor): publish info regardless cloud content
- style(autoware_pointcloud_preprocessor): typo
- feat(autoware_pointcloud_preprocessor): make update_concatenated_point_cloud_config static for easier integration
* docs(autoware_pointcloud_preprocessor): typo Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>
- fix(autoware_pointcloud_preprocessor): publish cloud info out of condition block
- fix(autoware_pointcloud_preprocessor): container access with safe bound checking
- style(autoware_pointcloud_preprocessor): unify naming convention (part 1 - content)
- style(autoware_pointcloud_preprocessor): unify naming convention (part 2 - files name)
- style(autoware_pointcloud_preprocessor): naming convention for main API
- doc(autoware_pointcloud_preprocessor): add docstring
* feat(autoware_pointcloud_preprocessor): add remap to launch files ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>
-
fix(pointcloud_preprocessor): handle empty pointclouds in pickup_based_downsample_filter (#11003)
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Launch files
- launch/approximate_downsample_filter.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/approximate_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- approximate_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/approximate_downsample_filter_node.param.yaml]
- launch/blockage_diag_node.launch.xml
-
- input_topic_name [default: pointcloud_raw_ex]
- output_topic_name [default: blockage_diag/pointcloud]
- blockage_diagnostics_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/blockage_diag_node.param.yaml]
- launch/concatenate_and_time_sync_node.launch.xml
-
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- output [default: /sensing/lidar/concatenated/pointcloud]
- output_info [default: /sensing/lidar/concatenated/pointcloud_info]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_and_time_sync_node.param.yaml]
- launch/concatenate_pointcloud.launch.xml
-
- output [default: /sensing/lidar/concatenated/pointcloud]
- output_info [default: /sensing/lidar/concatenated/pointcloud_info]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_pointclouds.param.yaml]
- launch/crop_box_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/self_cropped/pointcloud_ex]
- input_frame [default: base_link]
- output_frame [default: base_link]
- crop_box_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/crop_box_filter_node.param.yaml]
- launch/distortion_corrector_node.launch.xml
-
- input/pointcloud [default: /sensing/lidar/top/mirror_cropped/pointcloud_ex]
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- input/imu [default: /sensing/imu/imu_data]
- output/pointcloud [default: /sensing/lidar/top/rectified/pointcloud_ex]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/distortion_corrector_node.param.yaml]
- launch/dual_return_outlier_filter_node.launch.xml
-
- input_topic_name [default: /pointcloud]
- output_topic_name [default: /pointcloud_filtered]
- input_frame [default: ]
- output_frame [default: ]
- dual_return_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/dual_return_outlier_filter_node.param.yaml]
- launch/lanelet2_map_filter_node.launch.xml
-
- input_vector_map [default: /map/vector_map]
- input_pointcloud [default: detection_area/pointcloud]
- output_pointcloud [default: vector_map_filtered/pointcloud]
- lanelet2_map_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/lanelet2_map_filter_node.param.yaml]
- launch/pickup_based_voxel_grid_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/pickup_based_voxel_grid_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- pickup_based_voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pickup_based_voxel_grid_downsample_filter_node.param.yaml]
- launch/pointcloud_accumulator_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud]
- output_topic_name [default: /sensing/lidar/top/pointcloud_accumulated]
- input_frame [default: base_link]
- output_frame [default: base_link]
- pointcloud_accumulator_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pointcloud_accumulator_node.param.yaml]
- launch/preprocessor.launch.xml
-
- input_points_raw_list [default: ['/points_raw']]
- output_points_raw [default: /points_raw/cropbox/filtered]
- tf_output_frame [default: base_link]
- launch/radius_search_2d_outlier_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/pointcloud_filtered]
- input_frame [default: base_link]
- output_frame [default: base_link]
- radius_search_2d_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/radius_search_2d_outlier_filter_node.param.yaml]
- launch/random_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/random_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- random_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/random_downsample_filter_node.param.yaml]
- launch/ring_outlier_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/pointcloud_ring_filtered]
- input_frame [default: ]
- output_frame [default: ]
- ring_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/ring_outlier_filter_node.param.yaml]
- launch/ring_passthrough_filter.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/ring_passthrough_filtered/pointcloud]
- input_frame [default: ]
- output_frame [default: base_link]
- passthrough_filter_uint16_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/passthrough_filter_uint16_node.param.yaml]
- launch/time_synchronizer_node.launch.xml
-
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/time_synchronizer_node.param.yaml]
- launch/vector_map_inside_area_filter_node.launch.xml
-
- input_vector_map [default: /map/vector_map]
- input_pointcloud [default: compare_map_filtered/pointcloud]
- output_pointcloud [default: vector_map_inside_area_filtered/pointcloud]
- vector_map_inside_area_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/vector_map_inside_area_filter_node.param.yaml]
- launch/voxel_grid_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/voxel_grid_downsample_filter/pointcloud]
- input_frame [default: base_link]
- output_frame [default: base_link]
- voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_downsample_filter_node.param.yaml]
- launch/voxel_grid_outlier_filter_node.launch.xml
-
- input_topic_name [default: /pointcloud_raw]
- output_topic_name [default: /pointcloud_filtered]
- input_frame [default: ]
- output_frame [default: ]
- voxel_grid_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_outlier_filter_node.param.yaml]
Messages
Services
Plugins
Recent questions tagged autoware_pointcloud_preprocessor at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- amc-nu
- Yukihiro Saito
- Kyoichi Sugahara
- Dai Nguyen
- Kenzo Lobos-Tsunekawa
- Yihsiang Fang
- Yoshi Ri
- David Wong
- Melike Tanrikulu
- Max Schmeller
- Kaan Colak
Authors
- Open Perception
- Julius Kammerl
- William Woodall
autoware_pointcloud_preprocessor
Purpose
The autoware_pointcloud_preprocessor
is a package that includes the following filters:
- removing outlier points
- cropping
- concatenating pointclouds
- correcting distortion
- downsampling
- densifying pointclouds
Inner-workings / Algorithms
Detail description of each filter’s algorithm is in the following links.
Filter Name | Description | Detail |
---|---|---|
concatenate_data | subscribe multiple pointclouds and concatenate them into a pointcloud | link |
crop_box_filter | remove points within a given box | link |
distortion_corrector | compensate pointcloud distortion caused by ego vehicle’s movement during 1 scan | link |
downsample_filter | downsampling input pointcloud | link |
outlier_filter | remove points caused by hardware problems, rain drops and small insects as a noise | link |
passthrough_filter | remove points on the outside of a range in given field (e.g. x, y, z, intensity) | link |
pointcloud_accumulator | accumulate pointclouds for a given amount of time | link |
pointcloud_densifier | enhance sparse point clouds by using information from previous frames | link |
vector_map_filter | remove points on the outside of lane by using vector map | link |
vector_map_inside_area_filter | remove points inside of vector map area that has given type by parameter | link |
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
~/input/points |
sensor_msgs::msg::PointCloud2 |
reference points |
~/input/indices |
pcl_msgs::msg::Indices |
reference indices |
Output
Name | Type | Description |
---|---|---|
~/output/points |
sensor_msgs::msg::PointCloud2 |
filtered points |
Parameters
Node Parameters
Name | Type | Default Value | Description |
---|---|---|---|
input_frame |
string | ” “ | input frame id |
output_frame |
string | ” “ | output frame id |
max_queue_size |
int | 5 | max queue size of input/output topics |
use_indices |
bool | false | flag to use pointcloud indices |
latched_indices |
bool | false | flag to latch pointcloud indices |
approximate_sync |
bool | false | flag to use approximate sync option |
Assumptions / Known limits
autoware::pointcloud_preprocessor::Filter
is implemented based on pcl_perception [1] because
of this issue.
Measuring the performance
In Autoware, point cloud data from each LiDAR sensor undergoes preprocessing in the sensing pipeline before being input into the perception pipeline. The preprocessing stages are illustrated in the diagram below:
Each stage in the pipeline incurs a processing delay. Mostly, we’ve used ros2 topic delay /topic_name
to measure
the time between the message header and the current time. This approach works well for small-sized messages. However,
when dealing with large point cloud messages, this method introduces an additional delay. This is primarily because
accessing these large point cloud messages externally impacts the pipeline’s performance.
Our sensing/perception nodes are designed to run within composable node containers, leveraging intra-process communication. External subscriptions to these messages (like using ros2 topic delay or rviz2) impose extra delays and can even slow down the pipeline by subscribing externally. Therefore, these measurements will not be accurate.
To mitigate this issue, we’ve adopted a method where each node in the pipeline reports its pipeline latency time. This approach ensures the integrity of intra-process communication and provides a more accurate measure of delays in the pipeline.
Benchmarking The Pipeline
The nodes within the pipeline report the pipeline latency time, indicating the duration from the sensor driver’s pointcloud output to the node’s output. This data is crucial for assessing the pipeline’s health and efficiency.
When running Autoware, you can monitor the pipeline latency times for each node in the pipeline by subscribing to the following ROS 2 topics:
/sensing/lidar/LidarX/crop_box_filter_self/debug/pipeline_latency_ms
/sensing/lidar/LidarX/crop_box_filter_mirror/debug/pipeline_latency_ms
/sensing/lidar/LidarX/distortion_corrector/debug/pipeline_latency_ms
/sensing/lidar/LidarX/ring_outlier_filter/debug/pipeline_latency_ms
/sensing/lidar/concatenate_data_synchronizer/debug/sensing/lidar/LidarX/pointcloud/pipeline_latency_ms
These topics provide the pipeline latency times, giving insights into the delays at various stages of the pipeline from the sensor output of LidarX to each subsequent node.
File truncated at 100 lines see the full file
Changelog for package autoware_pointcloud_preprocessor
0.47.0 (2025-08-11)
-
refactor(pointcloud_preprocessor): extract downsample logic from pickup_based_voxel_downsample_filter (#11098)
- feat(pointcloud_preprocessor): add voxel size struct and downsampling function to pickup based filter
- refactor(pointcloud_preprocessor): use point_cloud2_iterator to handle pointcloud
- refactor(pointcloud_preprocessor): pass VoxelSize by const reference to improve performance
- feat(pointcloud_preprocessor): enhance voxel grid downsampling tests with additional scenarios
- feat(pointcloud_preprocessor): refactor downsampling logic to extract unique voxel point indices and copy filtered points
- fix(pointcloud_preprocessor): optimize voxel point index extraction and memory copying in downsampling
- refactor(pointcloud_preprocessor): rename voxel_map to index_map for clarity in downsampling functions
- refactor(pointcloud_preprocessor): remove unused includes
- chore(pointcloud_preprocessor): apply clang-format and cpplint
- chore(pointcloud_preprocessor): fix linter error
- style(pre-commit): autofix
- style(poincloud_preprocessor): adjust clang-format directives for consistency
- fix(pointcloud_preprocessor): correct function name from copy_filtered_point to copy_filtered_points
- fix(pointcloud_preprocessor): update parameter type from ConstSharedPtr to reference
* refactor(pointcloud_preprocessor): consolidate voxel size parameters into a single struct ---------Co-authored-by: Takahisa.Ishikawa <<takahisa.ishikawa@tier4.jp>> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info (#10851)
- feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info
- style(pre-commit): autofix
- feat(autoware_cuda_pointcloud_preprocessor): handle concatenated pointcloud meta info
- feat(autoware_pointcloud_preprocessor): serialized config of matching strategy
- feat(autoware_pointcloud_preprocessor): update msg
- feat(autoware_pointcloud_preprocessor): update msg (2)
- docs(autoware_pointcloud_preprocessor): add cloud info topic description
- feat(autoware_pointcloud_preprocessor): add unit tests for cloud info
- fix(autoware_pointcloud_preprocessor): pre-commit
- fix(autoware_pointcloud_preprocessor): remove *_struct headers inclusion
- fix(autoware_pointcloud_preprocessor): check if the matching strategy cannot be enumerated
- test(autoware_pointcloud_preprocessor): full cloud repr
- feat(autoware_pointcloud_preprocessor): auto success set & more unit tests
- feat(autoware_pointcloud_preprocessor): publish info regardless cloud content
- style(autoware_pointcloud_preprocessor): typo
- feat(autoware_pointcloud_preprocessor): make update_concatenated_point_cloud_config static for easier integration
* docs(autoware_pointcloud_preprocessor): typo Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>
- fix(autoware_pointcloud_preprocessor): publish cloud info out of condition block
- fix(autoware_pointcloud_preprocessor): container access with safe bound checking
- style(autoware_pointcloud_preprocessor): unify naming convention (part 1 - content)
- style(autoware_pointcloud_preprocessor): unify naming convention (part 2 - files name)
- style(autoware_pointcloud_preprocessor): naming convention for main API
- doc(autoware_pointcloud_preprocessor): add docstring
* feat(autoware_pointcloud_preprocessor): add remap to launch files ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>
-
fix(pointcloud_preprocessor): handle empty pointclouds in pickup_based_downsample_filter (#11003)
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Launch files
- launch/approximate_downsample_filter.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/approximate_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- approximate_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/approximate_downsample_filter_node.param.yaml]
- launch/blockage_diag_node.launch.xml
-
- input_topic_name [default: pointcloud_raw_ex]
- output_topic_name [default: blockage_diag/pointcloud]
- blockage_diagnostics_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/blockage_diag_node.param.yaml]
- launch/concatenate_and_time_sync_node.launch.xml
-
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- output [default: /sensing/lidar/concatenated/pointcloud]
- output_info [default: /sensing/lidar/concatenated/pointcloud_info]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_and_time_sync_node.param.yaml]
- launch/concatenate_pointcloud.launch.xml
-
- output [default: /sensing/lidar/concatenated/pointcloud]
- output_info [default: /sensing/lidar/concatenated/pointcloud_info]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_pointclouds.param.yaml]
- launch/crop_box_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/self_cropped/pointcloud_ex]
- input_frame [default: base_link]
- output_frame [default: base_link]
- crop_box_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/crop_box_filter_node.param.yaml]
- launch/distortion_corrector_node.launch.xml
-
- input/pointcloud [default: /sensing/lidar/top/mirror_cropped/pointcloud_ex]
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- input/imu [default: /sensing/imu/imu_data]
- output/pointcloud [default: /sensing/lidar/top/rectified/pointcloud_ex]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/distortion_corrector_node.param.yaml]
- launch/dual_return_outlier_filter_node.launch.xml
-
- input_topic_name [default: /pointcloud]
- output_topic_name [default: /pointcloud_filtered]
- input_frame [default: ]
- output_frame [default: ]
- dual_return_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/dual_return_outlier_filter_node.param.yaml]
- launch/lanelet2_map_filter_node.launch.xml
-
- input_vector_map [default: /map/vector_map]
- input_pointcloud [default: detection_area/pointcloud]
- output_pointcloud [default: vector_map_filtered/pointcloud]
- lanelet2_map_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/lanelet2_map_filter_node.param.yaml]
- launch/pickup_based_voxel_grid_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/pickup_based_voxel_grid_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- pickup_based_voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pickup_based_voxel_grid_downsample_filter_node.param.yaml]
- launch/pointcloud_accumulator_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud]
- output_topic_name [default: /sensing/lidar/top/pointcloud_accumulated]
- input_frame [default: base_link]
- output_frame [default: base_link]
- pointcloud_accumulator_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pointcloud_accumulator_node.param.yaml]
- launch/preprocessor.launch.xml
-
- input_points_raw_list [default: ['/points_raw']]
- output_points_raw [default: /points_raw/cropbox/filtered]
- tf_output_frame [default: base_link]
- launch/radius_search_2d_outlier_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/pointcloud_filtered]
- input_frame [default: base_link]
- output_frame [default: base_link]
- radius_search_2d_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/radius_search_2d_outlier_filter_node.param.yaml]
- launch/random_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/random_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- random_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/random_downsample_filter_node.param.yaml]
- launch/ring_outlier_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/pointcloud_ring_filtered]
- input_frame [default: ]
- output_frame [default: ]
- ring_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/ring_outlier_filter_node.param.yaml]
- launch/ring_passthrough_filter.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/ring_passthrough_filtered/pointcloud]
- input_frame [default: ]
- output_frame [default: base_link]
- passthrough_filter_uint16_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/passthrough_filter_uint16_node.param.yaml]
- launch/time_synchronizer_node.launch.xml
-
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/time_synchronizer_node.param.yaml]
- launch/vector_map_inside_area_filter_node.launch.xml
-
- input_vector_map [default: /map/vector_map]
- input_pointcloud [default: compare_map_filtered/pointcloud]
- output_pointcloud [default: vector_map_inside_area_filtered/pointcloud]
- vector_map_inside_area_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/vector_map_inside_area_filter_node.param.yaml]
- launch/voxel_grid_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/voxel_grid_downsample_filter/pointcloud]
- input_frame [default: base_link]
- output_frame [default: base_link]
- voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_downsample_filter_node.param.yaml]
- launch/voxel_grid_outlier_filter_node.launch.xml
-
- input_topic_name [default: /pointcloud_raw]
- output_topic_name [default: /pointcloud_filtered]
- input_frame [default: ]
- output_frame [default: ]
- voxel_grid_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_outlier_filter_node.param.yaml]
Messages
Services
Plugins
Recent questions tagged autoware_pointcloud_preprocessor at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- amc-nu
- Yukihiro Saito
- Kyoichi Sugahara
- Dai Nguyen
- Kenzo Lobos-Tsunekawa
- Yihsiang Fang
- Yoshi Ri
- David Wong
- Melike Tanrikulu
- Max Schmeller
- Kaan Colak
Authors
- Open Perception
- Julius Kammerl
- William Woodall
autoware_pointcloud_preprocessor
Purpose
The autoware_pointcloud_preprocessor
is a package that includes the following filters:
- removing outlier points
- cropping
- concatenating pointclouds
- correcting distortion
- downsampling
- densifying pointclouds
Inner-workings / Algorithms
Detail description of each filter’s algorithm is in the following links.
Filter Name | Description | Detail |
---|---|---|
concatenate_data | subscribe multiple pointclouds and concatenate them into a pointcloud | link |
crop_box_filter | remove points within a given box | link |
distortion_corrector | compensate pointcloud distortion caused by ego vehicle’s movement during 1 scan | link |
downsample_filter | downsampling input pointcloud | link |
outlier_filter | remove points caused by hardware problems, rain drops and small insects as a noise | link |
passthrough_filter | remove points on the outside of a range in given field (e.g. x, y, z, intensity) | link |
pointcloud_accumulator | accumulate pointclouds for a given amount of time | link |
pointcloud_densifier | enhance sparse point clouds by using information from previous frames | link |
vector_map_filter | remove points on the outside of lane by using vector map | link |
vector_map_inside_area_filter | remove points inside of vector map area that has given type by parameter | link |
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
~/input/points |
sensor_msgs::msg::PointCloud2 |
reference points |
~/input/indices |
pcl_msgs::msg::Indices |
reference indices |
Output
Name | Type | Description |
---|---|---|
~/output/points |
sensor_msgs::msg::PointCloud2 |
filtered points |
Parameters
Node Parameters
Name | Type | Default Value | Description |
---|---|---|---|
input_frame |
string | ” “ | input frame id |
output_frame |
string | ” “ | output frame id |
max_queue_size |
int | 5 | max queue size of input/output topics |
use_indices |
bool | false | flag to use pointcloud indices |
latched_indices |
bool | false | flag to latch pointcloud indices |
approximate_sync |
bool | false | flag to use approximate sync option |
Assumptions / Known limits
autoware::pointcloud_preprocessor::Filter
is implemented based on pcl_perception [1] because
of this issue.
Measuring the performance
In Autoware, point cloud data from each LiDAR sensor undergoes preprocessing in the sensing pipeline before being input into the perception pipeline. The preprocessing stages are illustrated in the diagram below:
Each stage in the pipeline incurs a processing delay. Mostly, we’ve used ros2 topic delay /topic_name
to measure
the time between the message header and the current time. This approach works well for small-sized messages. However,
when dealing with large point cloud messages, this method introduces an additional delay. This is primarily because
accessing these large point cloud messages externally impacts the pipeline’s performance.
Our sensing/perception nodes are designed to run within composable node containers, leveraging intra-process communication. External subscriptions to these messages (like using ros2 topic delay or rviz2) impose extra delays and can even slow down the pipeline by subscribing externally. Therefore, these measurements will not be accurate.
To mitigate this issue, we’ve adopted a method where each node in the pipeline reports its pipeline latency time. This approach ensures the integrity of intra-process communication and provides a more accurate measure of delays in the pipeline.
Benchmarking The Pipeline
The nodes within the pipeline report the pipeline latency time, indicating the duration from the sensor driver’s pointcloud output to the node’s output. This data is crucial for assessing the pipeline’s health and efficiency.
When running Autoware, you can monitor the pipeline latency times for each node in the pipeline by subscribing to the following ROS 2 topics:
/sensing/lidar/LidarX/crop_box_filter_self/debug/pipeline_latency_ms
/sensing/lidar/LidarX/crop_box_filter_mirror/debug/pipeline_latency_ms
/sensing/lidar/LidarX/distortion_corrector/debug/pipeline_latency_ms
/sensing/lidar/LidarX/ring_outlier_filter/debug/pipeline_latency_ms
/sensing/lidar/concatenate_data_synchronizer/debug/sensing/lidar/LidarX/pointcloud/pipeline_latency_ms
These topics provide the pipeline latency times, giving insights into the delays at various stages of the pipeline from the sensor output of LidarX to each subsequent node.
File truncated at 100 lines see the full file
Changelog for package autoware_pointcloud_preprocessor
0.47.0 (2025-08-11)
-
refactor(pointcloud_preprocessor): extract downsample logic from pickup_based_voxel_downsample_filter (#11098)
- feat(pointcloud_preprocessor): add voxel size struct and downsampling function to pickup based filter
- refactor(pointcloud_preprocessor): use point_cloud2_iterator to handle pointcloud
- refactor(pointcloud_preprocessor): pass VoxelSize by const reference to improve performance
- feat(pointcloud_preprocessor): enhance voxel grid downsampling tests with additional scenarios
- feat(pointcloud_preprocessor): refactor downsampling logic to extract unique voxel point indices and copy filtered points
- fix(pointcloud_preprocessor): optimize voxel point index extraction and memory copying in downsampling
- refactor(pointcloud_preprocessor): rename voxel_map to index_map for clarity in downsampling functions
- refactor(pointcloud_preprocessor): remove unused includes
- chore(pointcloud_preprocessor): apply clang-format and cpplint
- chore(pointcloud_preprocessor): fix linter error
- style(pre-commit): autofix
- style(poincloud_preprocessor): adjust clang-format directives for consistency
- fix(pointcloud_preprocessor): correct function name from copy_filtered_point to copy_filtered_points
- fix(pointcloud_preprocessor): update parameter type from ConstSharedPtr to reference
* refactor(pointcloud_preprocessor): consolidate voxel size parameters into a single struct ---------Co-authored-by: Takahisa.Ishikawa <<takahisa.ishikawa@tier4.jp>> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info (#10851)
- feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info
- style(pre-commit): autofix
- feat(autoware_cuda_pointcloud_preprocessor): handle concatenated pointcloud meta info
- feat(autoware_pointcloud_preprocessor): serialized config of matching strategy
- feat(autoware_pointcloud_preprocessor): update msg
- feat(autoware_pointcloud_preprocessor): update msg (2)
- docs(autoware_pointcloud_preprocessor): add cloud info topic description
- feat(autoware_pointcloud_preprocessor): add unit tests for cloud info
- fix(autoware_pointcloud_preprocessor): pre-commit
- fix(autoware_pointcloud_preprocessor): remove *_struct headers inclusion
- fix(autoware_pointcloud_preprocessor): check if the matching strategy cannot be enumerated
- test(autoware_pointcloud_preprocessor): full cloud repr
- feat(autoware_pointcloud_preprocessor): auto success set & more unit tests
- feat(autoware_pointcloud_preprocessor): publish info regardless cloud content
- style(autoware_pointcloud_preprocessor): typo
- feat(autoware_pointcloud_preprocessor): make update_concatenated_point_cloud_config static for easier integration
* docs(autoware_pointcloud_preprocessor): typo Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>
- fix(autoware_pointcloud_preprocessor): publish cloud info out of condition block
- fix(autoware_pointcloud_preprocessor): container access with safe bound checking
- style(autoware_pointcloud_preprocessor): unify naming convention (part 1 - content)
- style(autoware_pointcloud_preprocessor): unify naming convention (part 2 - files name)
- style(autoware_pointcloud_preprocessor): naming convention for main API
- doc(autoware_pointcloud_preprocessor): add docstring
* feat(autoware_pointcloud_preprocessor): add remap to launch files ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>
-
fix(pointcloud_preprocessor): handle empty pointclouds in pickup_based_downsample_filter (#11003)
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Launch files
- launch/approximate_downsample_filter.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/approximate_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- approximate_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/approximate_downsample_filter_node.param.yaml]
- launch/blockage_diag_node.launch.xml
-
- input_topic_name [default: pointcloud_raw_ex]
- output_topic_name [default: blockage_diag/pointcloud]
- blockage_diagnostics_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/blockage_diag_node.param.yaml]
- launch/concatenate_and_time_sync_node.launch.xml
-
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- output [default: /sensing/lidar/concatenated/pointcloud]
- output_info [default: /sensing/lidar/concatenated/pointcloud_info]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_and_time_sync_node.param.yaml]
- launch/concatenate_pointcloud.launch.xml
-
- output [default: /sensing/lidar/concatenated/pointcloud]
- output_info [default: /sensing/lidar/concatenated/pointcloud_info]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_pointclouds.param.yaml]
- launch/crop_box_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/self_cropped/pointcloud_ex]
- input_frame [default: base_link]
- output_frame [default: base_link]
- crop_box_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/crop_box_filter_node.param.yaml]
- launch/distortion_corrector_node.launch.xml
-
- input/pointcloud [default: /sensing/lidar/top/mirror_cropped/pointcloud_ex]
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- input/imu [default: /sensing/imu/imu_data]
- output/pointcloud [default: /sensing/lidar/top/rectified/pointcloud_ex]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/distortion_corrector_node.param.yaml]
- launch/dual_return_outlier_filter_node.launch.xml
-
- input_topic_name [default: /pointcloud]
- output_topic_name [default: /pointcloud_filtered]
- input_frame [default: ]
- output_frame [default: ]
- dual_return_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/dual_return_outlier_filter_node.param.yaml]
- launch/lanelet2_map_filter_node.launch.xml
-
- input_vector_map [default: /map/vector_map]
- input_pointcloud [default: detection_area/pointcloud]
- output_pointcloud [default: vector_map_filtered/pointcloud]
- lanelet2_map_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/lanelet2_map_filter_node.param.yaml]
- launch/pickup_based_voxel_grid_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/pickup_based_voxel_grid_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- pickup_based_voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pickup_based_voxel_grid_downsample_filter_node.param.yaml]
- launch/pointcloud_accumulator_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud]
- output_topic_name [default: /sensing/lidar/top/pointcloud_accumulated]
- input_frame [default: base_link]
- output_frame [default: base_link]
- pointcloud_accumulator_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pointcloud_accumulator_node.param.yaml]
- launch/preprocessor.launch.xml
-
- input_points_raw_list [default: ['/points_raw']]
- output_points_raw [default: /points_raw/cropbox/filtered]
- tf_output_frame [default: base_link]
- launch/radius_search_2d_outlier_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/pointcloud_filtered]
- input_frame [default: base_link]
- output_frame [default: base_link]
- radius_search_2d_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/radius_search_2d_outlier_filter_node.param.yaml]
- launch/random_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/random_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- random_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/random_downsample_filter_node.param.yaml]
- launch/ring_outlier_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/pointcloud_ring_filtered]
- input_frame [default: ]
- output_frame [default: ]
- ring_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/ring_outlier_filter_node.param.yaml]
- launch/ring_passthrough_filter.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/ring_passthrough_filtered/pointcloud]
- input_frame [default: ]
- output_frame [default: base_link]
- passthrough_filter_uint16_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/passthrough_filter_uint16_node.param.yaml]
- launch/time_synchronizer_node.launch.xml
-
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/time_synchronizer_node.param.yaml]
- launch/vector_map_inside_area_filter_node.launch.xml
-
- input_vector_map [default: /map/vector_map]
- input_pointcloud [default: compare_map_filtered/pointcloud]
- output_pointcloud [default: vector_map_inside_area_filtered/pointcloud]
- vector_map_inside_area_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/vector_map_inside_area_filter_node.param.yaml]
- launch/voxel_grid_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/voxel_grid_downsample_filter/pointcloud]
- input_frame [default: base_link]
- output_frame [default: base_link]
- voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_downsample_filter_node.param.yaml]
- launch/voxel_grid_outlier_filter_node.launch.xml
-
- input_topic_name [default: /pointcloud_raw]
- output_topic_name [default: /pointcloud_filtered]
- input_frame [default: ]
- output_frame [default: ]
- voxel_grid_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_outlier_filter_node.param.yaml]
Messages
Services
Plugins
Recent questions tagged autoware_pointcloud_preprocessor at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- amc-nu
- Yukihiro Saito
- Kyoichi Sugahara
- Dai Nguyen
- Kenzo Lobos-Tsunekawa
- Yihsiang Fang
- Yoshi Ri
- David Wong
- Melike Tanrikulu
- Max Schmeller
- Kaan Colak
Authors
- Open Perception
- Julius Kammerl
- William Woodall
autoware_pointcloud_preprocessor
Purpose
The autoware_pointcloud_preprocessor
is a package that includes the following filters:
- removing outlier points
- cropping
- concatenating pointclouds
- correcting distortion
- downsampling
- densifying pointclouds
Inner-workings / Algorithms
Detail description of each filter’s algorithm is in the following links.
Filter Name | Description | Detail |
---|---|---|
concatenate_data | subscribe multiple pointclouds and concatenate them into a pointcloud | link |
crop_box_filter | remove points within a given box | link |
distortion_corrector | compensate pointcloud distortion caused by ego vehicle’s movement during 1 scan | link |
downsample_filter | downsampling input pointcloud | link |
outlier_filter | remove points caused by hardware problems, rain drops and small insects as a noise | link |
passthrough_filter | remove points on the outside of a range in given field (e.g. x, y, z, intensity) | link |
pointcloud_accumulator | accumulate pointclouds for a given amount of time | link |
pointcloud_densifier | enhance sparse point clouds by using information from previous frames | link |
vector_map_filter | remove points on the outside of lane by using vector map | link |
vector_map_inside_area_filter | remove points inside of vector map area that has given type by parameter | link |
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
~/input/points |
sensor_msgs::msg::PointCloud2 |
reference points |
~/input/indices |
pcl_msgs::msg::Indices |
reference indices |
Output
Name | Type | Description |
---|---|---|
~/output/points |
sensor_msgs::msg::PointCloud2 |
filtered points |
Parameters
Node Parameters
Name | Type | Default Value | Description |
---|---|---|---|
input_frame |
string | ” “ | input frame id |
output_frame |
string | ” “ | output frame id |
max_queue_size |
int | 5 | max queue size of input/output topics |
use_indices |
bool | false | flag to use pointcloud indices |
latched_indices |
bool | false | flag to latch pointcloud indices |
approximate_sync |
bool | false | flag to use approximate sync option |
Assumptions / Known limits
autoware::pointcloud_preprocessor::Filter
is implemented based on pcl_perception [1] because
of this issue.
Measuring the performance
In Autoware, point cloud data from each LiDAR sensor undergoes preprocessing in the sensing pipeline before being input into the perception pipeline. The preprocessing stages are illustrated in the diagram below:
Each stage in the pipeline incurs a processing delay. Mostly, we’ve used ros2 topic delay /topic_name
to measure
the time between the message header and the current time. This approach works well for small-sized messages. However,
when dealing with large point cloud messages, this method introduces an additional delay. This is primarily because
accessing these large point cloud messages externally impacts the pipeline’s performance.
Our sensing/perception nodes are designed to run within composable node containers, leveraging intra-process communication. External subscriptions to these messages (like using ros2 topic delay or rviz2) impose extra delays and can even slow down the pipeline by subscribing externally. Therefore, these measurements will not be accurate.
To mitigate this issue, we’ve adopted a method where each node in the pipeline reports its pipeline latency time. This approach ensures the integrity of intra-process communication and provides a more accurate measure of delays in the pipeline.
Benchmarking The Pipeline
The nodes within the pipeline report the pipeline latency time, indicating the duration from the sensor driver’s pointcloud output to the node’s output. This data is crucial for assessing the pipeline’s health and efficiency.
When running Autoware, you can monitor the pipeline latency times for each node in the pipeline by subscribing to the following ROS 2 topics:
/sensing/lidar/LidarX/crop_box_filter_self/debug/pipeline_latency_ms
/sensing/lidar/LidarX/crop_box_filter_mirror/debug/pipeline_latency_ms
/sensing/lidar/LidarX/distortion_corrector/debug/pipeline_latency_ms
/sensing/lidar/LidarX/ring_outlier_filter/debug/pipeline_latency_ms
/sensing/lidar/concatenate_data_synchronizer/debug/sensing/lidar/LidarX/pointcloud/pipeline_latency_ms
These topics provide the pipeline latency times, giving insights into the delays at various stages of the pipeline from the sensor output of LidarX to each subsequent node.
File truncated at 100 lines see the full file
Changelog for package autoware_pointcloud_preprocessor
0.47.0 (2025-08-11)
-
refactor(pointcloud_preprocessor): extract downsample logic from pickup_based_voxel_downsample_filter (#11098)
- feat(pointcloud_preprocessor): add voxel size struct and downsampling function to pickup based filter
- refactor(pointcloud_preprocessor): use point_cloud2_iterator to handle pointcloud
- refactor(pointcloud_preprocessor): pass VoxelSize by const reference to improve performance
- feat(pointcloud_preprocessor): enhance voxel grid downsampling tests with additional scenarios
- feat(pointcloud_preprocessor): refactor downsampling logic to extract unique voxel point indices and copy filtered points
- fix(pointcloud_preprocessor): optimize voxel point index extraction and memory copying in downsampling
- refactor(pointcloud_preprocessor): rename voxel_map to index_map for clarity in downsampling functions
- refactor(pointcloud_preprocessor): remove unused includes
- chore(pointcloud_preprocessor): apply clang-format and cpplint
- chore(pointcloud_preprocessor): fix linter error
- style(pre-commit): autofix
- style(poincloud_preprocessor): adjust clang-format directives for consistency
- fix(pointcloud_preprocessor): correct function name from copy_filtered_point to copy_filtered_points
- fix(pointcloud_preprocessor): update parameter type from ConstSharedPtr to reference
* refactor(pointcloud_preprocessor): consolidate voxel size parameters into a single struct ---------Co-authored-by: Takahisa.Ishikawa <<takahisa.ishikawa@tier4.jp>> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info (#10851)
- feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info
- style(pre-commit): autofix
- feat(autoware_cuda_pointcloud_preprocessor): handle concatenated pointcloud meta info
- feat(autoware_pointcloud_preprocessor): serialized config of matching strategy
- feat(autoware_pointcloud_preprocessor): update msg
- feat(autoware_pointcloud_preprocessor): update msg (2)
- docs(autoware_pointcloud_preprocessor): add cloud info topic description
- feat(autoware_pointcloud_preprocessor): add unit tests for cloud info
- fix(autoware_pointcloud_preprocessor): pre-commit
- fix(autoware_pointcloud_preprocessor): remove *_struct headers inclusion
- fix(autoware_pointcloud_preprocessor): check if the matching strategy cannot be enumerated
- test(autoware_pointcloud_preprocessor): full cloud repr
- feat(autoware_pointcloud_preprocessor): auto success set & more unit tests
- feat(autoware_pointcloud_preprocessor): publish info regardless cloud content
- style(autoware_pointcloud_preprocessor): typo
- feat(autoware_pointcloud_preprocessor): make update_concatenated_point_cloud_config static for easier integration
* docs(autoware_pointcloud_preprocessor): typo Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>
- fix(autoware_pointcloud_preprocessor): publish cloud info out of condition block
- fix(autoware_pointcloud_preprocessor): container access with safe bound checking
- style(autoware_pointcloud_preprocessor): unify naming convention (part 1 - content)
- style(autoware_pointcloud_preprocessor): unify naming convention (part 2 - files name)
- style(autoware_pointcloud_preprocessor): naming convention for main API
- doc(autoware_pointcloud_preprocessor): add docstring
* feat(autoware_pointcloud_preprocessor): add remap to launch files ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>
-
fix(pointcloud_preprocessor): handle empty pointclouds in pickup_based_downsample_filter (#11003)
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Launch files
- launch/approximate_downsample_filter.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/approximate_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- approximate_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/approximate_downsample_filter_node.param.yaml]
- launch/blockage_diag_node.launch.xml
-
- input_topic_name [default: pointcloud_raw_ex]
- output_topic_name [default: blockage_diag/pointcloud]
- blockage_diagnostics_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/blockage_diag_node.param.yaml]
- launch/concatenate_and_time_sync_node.launch.xml
-
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- output [default: /sensing/lidar/concatenated/pointcloud]
- output_info [default: /sensing/lidar/concatenated/pointcloud_info]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_and_time_sync_node.param.yaml]
- launch/concatenate_pointcloud.launch.xml
-
- output [default: /sensing/lidar/concatenated/pointcloud]
- output_info [default: /sensing/lidar/concatenated/pointcloud_info]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_pointclouds.param.yaml]
- launch/crop_box_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/self_cropped/pointcloud_ex]
- input_frame [default: base_link]
- output_frame [default: base_link]
- crop_box_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/crop_box_filter_node.param.yaml]
- launch/distortion_corrector_node.launch.xml
-
- input/pointcloud [default: /sensing/lidar/top/mirror_cropped/pointcloud_ex]
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- input/imu [default: /sensing/imu/imu_data]
- output/pointcloud [default: /sensing/lidar/top/rectified/pointcloud_ex]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/distortion_corrector_node.param.yaml]
- launch/dual_return_outlier_filter_node.launch.xml
-
- input_topic_name [default: /pointcloud]
- output_topic_name [default: /pointcloud_filtered]
- input_frame [default: ]
- output_frame [default: ]
- dual_return_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/dual_return_outlier_filter_node.param.yaml]
- launch/lanelet2_map_filter_node.launch.xml
-
- input_vector_map [default: /map/vector_map]
- input_pointcloud [default: detection_area/pointcloud]
- output_pointcloud [default: vector_map_filtered/pointcloud]
- lanelet2_map_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/lanelet2_map_filter_node.param.yaml]
- launch/pickup_based_voxel_grid_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/pickup_based_voxel_grid_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- pickup_based_voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pickup_based_voxel_grid_downsample_filter_node.param.yaml]
- launch/pointcloud_accumulator_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud]
- output_topic_name [default: /sensing/lidar/top/pointcloud_accumulated]
- input_frame [default: base_link]
- output_frame [default: base_link]
- pointcloud_accumulator_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pointcloud_accumulator_node.param.yaml]
- launch/preprocessor.launch.xml
-
- input_points_raw_list [default: ['/points_raw']]
- output_points_raw [default: /points_raw/cropbox/filtered]
- tf_output_frame [default: base_link]
- launch/radius_search_2d_outlier_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/pointcloud_filtered]
- input_frame [default: base_link]
- output_frame [default: base_link]
- radius_search_2d_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/radius_search_2d_outlier_filter_node.param.yaml]
- launch/random_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/random_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- random_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/random_downsample_filter_node.param.yaml]
- launch/ring_outlier_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/pointcloud_ring_filtered]
- input_frame [default: ]
- output_frame [default: ]
- ring_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/ring_outlier_filter_node.param.yaml]
- launch/ring_passthrough_filter.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/ring_passthrough_filtered/pointcloud]
- input_frame [default: ]
- output_frame [default: base_link]
- passthrough_filter_uint16_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/passthrough_filter_uint16_node.param.yaml]
- launch/time_synchronizer_node.launch.xml
-
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/time_synchronizer_node.param.yaml]
- launch/vector_map_inside_area_filter_node.launch.xml
-
- input_vector_map [default: /map/vector_map]
- input_pointcloud [default: compare_map_filtered/pointcloud]
- output_pointcloud [default: vector_map_inside_area_filtered/pointcloud]
- vector_map_inside_area_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/vector_map_inside_area_filter_node.param.yaml]
- launch/voxel_grid_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/voxel_grid_downsample_filter/pointcloud]
- input_frame [default: base_link]
- output_frame [default: base_link]
- voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_downsample_filter_node.param.yaml]
- launch/voxel_grid_outlier_filter_node.launch.xml
-
- input_topic_name [default: /pointcloud_raw]
- output_topic_name [default: /pointcloud_filtered]
- input_frame [default: ]
- output_frame [default: ]
- voxel_grid_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_outlier_filter_node.param.yaml]
Messages
Services
Plugins
Recent questions tagged autoware_pointcloud_preprocessor at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- amc-nu
- Yukihiro Saito
- Kyoichi Sugahara
- Dai Nguyen
- Kenzo Lobos-Tsunekawa
- Yihsiang Fang
- Yoshi Ri
- David Wong
- Melike Tanrikulu
- Max Schmeller
- Kaan Colak
Authors
- Open Perception
- Julius Kammerl
- William Woodall
autoware_pointcloud_preprocessor
Purpose
The autoware_pointcloud_preprocessor
is a package that includes the following filters:
- removing outlier points
- cropping
- concatenating pointclouds
- correcting distortion
- downsampling
- densifying pointclouds
Inner-workings / Algorithms
Detail description of each filter’s algorithm is in the following links.
Filter Name | Description | Detail |
---|---|---|
concatenate_data | subscribe multiple pointclouds and concatenate them into a pointcloud | link |
crop_box_filter | remove points within a given box | link |
distortion_corrector | compensate pointcloud distortion caused by ego vehicle’s movement during 1 scan | link |
downsample_filter | downsampling input pointcloud | link |
outlier_filter | remove points caused by hardware problems, rain drops and small insects as a noise | link |
passthrough_filter | remove points on the outside of a range in given field (e.g. x, y, z, intensity) | link |
pointcloud_accumulator | accumulate pointclouds for a given amount of time | link |
pointcloud_densifier | enhance sparse point clouds by using information from previous frames | link |
vector_map_filter | remove points on the outside of lane by using vector map | link |
vector_map_inside_area_filter | remove points inside of vector map area that has given type by parameter | link |
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
~/input/points |
sensor_msgs::msg::PointCloud2 |
reference points |
~/input/indices |
pcl_msgs::msg::Indices |
reference indices |
Output
Name | Type | Description |
---|---|---|
~/output/points |
sensor_msgs::msg::PointCloud2 |
filtered points |
Parameters
Node Parameters
Name | Type | Default Value | Description |
---|---|---|---|
input_frame |
string | ” “ | input frame id |
output_frame |
string | ” “ | output frame id |
max_queue_size |
int | 5 | max queue size of input/output topics |
use_indices |
bool | false | flag to use pointcloud indices |
latched_indices |
bool | false | flag to latch pointcloud indices |
approximate_sync |
bool | false | flag to use approximate sync option |
Assumptions / Known limits
autoware::pointcloud_preprocessor::Filter
is implemented based on pcl_perception [1] because
of this issue.
Measuring the performance
In Autoware, point cloud data from each LiDAR sensor undergoes preprocessing in the sensing pipeline before being input into the perception pipeline. The preprocessing stages are illustrated in the diagram below:
Each stage in the pipeline incurs a processing delay. Mostly, we’ve used ros2 topic delay /topic_name
to measure
the time between the message header and the current time. This approach works well for small-sized messages. However,
when dealing with large point cloud messages, this method introduces an additional delay. This is primarily because
accessing these large point cloud messages externally impacts the pipeline’s performance.
Our sensing/perception nodes are designed to run within composable node containers, leveraging intra-process communication. External subscriptions to these messages (like using ros2 topic delay or rviz2) impose extra delays and can even slow down the pipeline by subscribing externally. Therefore, these measurements will not be accurate.
To mitigate this issue, we’ve adopted a method where each node in the pipeline reports its pipeline latency time. This approach ensures the integrity of intra-process communication and provides a more accurate measure of delays in the pipeline.
Benchmarking The Pipeline
The nodes within the pipeline report the pipeline latency time, indicating the duration from the sensor driver’s pointcloud output to the node’s output. This data is crucial for assessing the pipeline’s health and efficiency.
When running Autoware, you can monitor the pipeline latency times for each node in the pipeline by subscribing to the following ROS 2 topics:
/sensing/lidar/LidarX/crop_box_filter_self/debug/pipeline_latency_ms
/sensing/lidar/LidarX/crop_box_filter_mirror/debug/pipeline_latency_ms
/sensing/lidar/LidarX/distortion_corrector/debug/pipeline_latency_ms
/sensing/lidar/LidarX/ring_outlier_filter/debug/pipeline_latency_ms
/sensing/lidar/concatenate_data_synchronizer/debug/sensing/lidar/LidarX/pointcloud/pipeline_latency_ms
These topics provide the pipeline latency times, giving insights into the delays at various stages of the pipeline from the sensor output of LidarX to each subsequent node.
File truncated at 100 lines see the full file
Changelog for package autoware_pointcloud_preprocessor
0.47.0 (2025-08-11)
-
refactor(pointcloud_preprocessor): extract downsample logic from pickup_based_voxel_downsample_filter (#11098)
- feat(pointcloud_preprocessor): add voxel size struct and downsampling function to pickup based filter
- refactor(pointcloud_preprocessor): use point_cloud2_iterator to handle pointcloud
- refactor(pointcloud_preprocessor): pass VoxelSize by const reference to improve performance
- feat(pointcloud_preprocessor): enhance voxel grid downsampling tests with additional scenarios
- feat(pointcloud_preprocessor): refactor downsampling logic to extract unique voxel point indices and copy filtered points
- fix(pointcloud_preprocessor): optimize voxel point index extraction and memory copying in downsampling
- refactor(pointcloud_preprocessor): rename voxel_map to index_map for clarity in downsampling functions
- refactor(pointcloud_preprocessor): remove unused includes
- chore(pointcloud_preprocessor): apply clang-format and cpplint
- chore(pointcloud_preprocessor): fix linter error
- style(pre-commit): autofix
- style(poincloud_preprocessor): adjust clang-format directives for consistency
- fix(pointcloud_preprocessor): correct function name from copy_filtered_point to copy_filtered_points
- fix(pointcloud_preprocessor): update parameter type from ConstSharedPtr to reference
* refactor(pointcloud_preprocessor): consolidate voxel size parameters into a single struct ---------Co-authored-by: Takahisa.Ishikawa <<takahisa.ishikawa@tier4.jp>> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info (#10851)
- feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info
- style(pre-commit): autofix
- feat(autoware_cuda_pointcloud_preprocessor): handle concatenated pointcloud meta info
- feat(autoware_pointcloud_preprocessor): serialized config of matching strategy
- feat(autoware_pointcloud_preprocessor): update msg
- feat(autoware_pointcloud_preprocessor): update msg (2)
- docs(autoware_pointcloud_preprocessor): add cloud info topic description
- feat(autoware_pointcloud_preprocessor): add unit tests for cloud info
- fix(autoware_pointcloud_preprocessor): pre-commit
- fix(autoware_pointcloud_preprocessor): remove *_struct headers inclusion
- fix(autoware_pointcloud_preprocessor): check if the matching strategy cannot be enumerated
- test(autoware_pointcloud_preprocessor): full cloud repr
- feat(autoware_pointcloud_preprocessor): auto success set & more unit tests
- feat(autoware_pointcloud_preprocessor): publish info regardless cloud content
- style(autoware_pointcloud_preprocessor): typo
- feat(autoware_pointcloud_preprocessor): make update_concatenated_point_cloud_config static for easier integration
* docs(autoware_pointcloud_preprocessor): typo Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>
- fix(autoware_pointcloud_preprocessor): publish cloud info out of condition block
- fix(autoware_pointcloud_preprocessor): container access with safe bound checking
- style(autoware_pointcloud_preprocessor): unify naming convention (part 1 - content)
- style(autoware_pointcloud_preprocessor): unify naming convention (part 2 - files name)
- style(autoware_pointcloud_preprocessor): naming convention for main API
- doc(autoware_pointcloud_preprocessor): add docstring
* feat(autoware_pointcloud_preprocessor): add remap to launch files ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>
-
fix(pointcloud_preprocessor): handle empty pointclouds in pickup_based_downsample_filter (#11003)
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Launch files
- launch/approximate_downsample_filter.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/approximate_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- approximate_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/approximate_downsample_filter_node.param.yaml]
- launch/blockage_diag_node.launch.xml
-
- input_topic_name [default: pointcloud_raw_ex]
- output_topic_name [default: blockage_diag/pointcloud]
- blockage_diagnostics_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/blockage_diag_node.param.yaml]
- launch/concatenate_and_time_sync_node.launch.xml
-
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- output [default: /sensing/lidar/concatenated/pointcloud]
- output_info [default: /sensing/lidar/concatenated/pointcloud_info]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_and_time_sync_node.param.yaml]
- launch/concatenate_pointcloud.launch.xml
-
- output [default: /sensing/lidar/concatenated/pointcloud]
- output_info [default: /sensing/lidar/concatenated/pointcloud_info]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_pointclouds.param.yaml]
- launch/crop_box_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/self_cropped/pointcloud_ex]
- input_frame [default: base_link]
- output_frame [default: base_link]
- crop_box_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/crop_box_filter_node.param.yaml]
- launch/distortion_corrector_node.launch.xml
-
- input/pointcloud [default: /sensing/lidar/top/mirror_cropped/pointcloud_ex]
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- input/imu [default: /sensing/imu/imu_data]
- output/pointcloud [default: /sensing/lidar/top/rectified/pointcloud_ex]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/distortion_corrector_node.param.yaml]
- launch/dual_return_outlier_filter_node.launch.xml
-
- input_topic_name [default: /pointcloud]
- output_topic_name [default: /pointcloud_filtered]
- input_frame [default: ]
- output_frame [default: ]
- dual_return_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/dual_return_outlier_filter_node.param.yaml]
- launch/lanelet2_map_filter_node.launch.xml
-
- input_vector_map [default: /map/vector_map]
- input_pointcloud [default: detection_area/pointcloud]
- output_pointcloud [default: vector_map_filtered/pointcloud]
- lanelet2_map_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/lanelet2_map_filter_node.param.yaml]
- launch/pickup_based_voxel_grid_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/pickup_based_voxel_grid_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- pickup_based_voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pickup_based_voxel_grid_downsample_filter_node.param.yaml]
- launch/pointcloud_accumulator_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud]
- output_topic_name [default: /sensing/lidar/top/pointcloud_accumulated]
- input_frame [default: base_link]
- output_frame [default: base_link]
- pointcloud_accumulator_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pointcloud_accumulator_node.param.yaml]
- launch/preprocessor.launch.xml
-
- input_points_raw_list [default: ['/points_raw']]
- output_points_raw [default: /points_raw/cropbox/filtered]
- tf_output_frame [default: base_link]
- launch/radius_search_2d_outlier_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/pointcloud_filtered]
- input_frame [default: base_link]
- output_frame [default: base_link]
- radius_search_2d_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/radius_search_2d_outlier_filter_node.param.yaml]
- launch/random_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/random_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- random_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/random_downsample_filter_node.param.yaml]
- launch/ring_outlier_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/pointcloud_ring_filtered]
- input_frame [default: ]
- output_frame [default: ]
- ring_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/ring_outlier_filter_node.param.yaml]
- launch/ring_passthrough_filter.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/ring_passthrough_filtered/pointcloud]
- input_frame [default: ]
- output_frame [default: base_link]
- passthrough_filter_uint16_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/passthrough_filter_uint16_node.param.yaml]
- launch/time_synchronizer_node.launch.xml
-
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/time_synchronizer_node.param.yaml]
- launch/vector_map_inside_area_filter_node.launch.xml
-
- input_vector_map [default: /map/vector_map]
- input_pointcloud [default: compare_map_filtered/pointcloud]
- output_pointcloud [default: vector_map_inside_area_filtered/pointcloud]
- vector_map_inside_area_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/vector_map_inside_area_filter_node.param.yaml]
- launch/voxel_grid_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/voxel_grid_downsample_filter/pointcloud]
- input_frame [default: base_link]
- output_frame [default: base_link]
- voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_downsample_filter_node.param.yaml]
- launch/voxel_grid_outlier_filter_node.launch.xml
-
- input_topic_name [default: /pointcloud_raw]
- output_topic_name [default: /pointcloud_filtered]
- input_frame [default: ]
- output_frame [default: ]
- voxel_grid_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_outlier_filter_node.param.yaml]
Messages
Services
Plugins
Recent questions tagged autoware_pointcloud_preprocessor at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- amc-nu
- Yukihiro Saito
- Kyoichi Sugahara
- Dai Nguyen
- Kenzo Lobos-Tsunekawa
- Yihsiang Fang
- Yoshi Ri
- David Wong
- Melike Tanrikulu
- Max Schmeller
- Kaan Colak
Authors
- Open Perception
- Julius Kammerl
- William Woodall
autoware_pointcloud_preprocessor
Purpose
The autoware_pointcloud_preprocessor
is a package that includes the following filters:
- removing outlier points
- cropping
- concatenating pointclouds
- correcting distortion
- downsampling
- densifying pointclouds
Inner-workings / Algorithms
Detail description of each filter’s algorithm is in the following links.
Filter Name | Description | Detail |
---|---|---|
concatenate_data | subscribe multiple pointclouds and concatenate them into a pointcloud | link |
crop_box_filter | remove points within a given box | link |
distortion_corrector | compensate pointcloud distortion caused by ego vehicle’s movement during 1 scan | link |
downsample_filter | downsampling input pointcloud | link |
outlier_filter | remove points caused by hardware problems, rain drops and small insects as a noise | link |
passthrough_filter | remove points on the outside of a range in given field (e.g. x, y, z, intensity) | link |
pointcloud_accumulator | accumulate pointclouds for a given amount of time | link |
pointcloud_densifier | enhance sparse point clouds by using information from previous frames | link |
vector_map_filter | remove points on the outside of lane by using vector map | link |
vector_map_inside_area_filter | remove points inside of vector map area that has given type by parameter | link |
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
~/input/points |
sensor_msgs::msg::PointCloud2 |
reference points |
~/input/indices |
pcl_msgs::msg::Indices |
reference indices |
Output
Name | Type | Description |
---|---|---|
~/output/points |
sensor_msgs::msg::PointCloud2 |
filtered points |
Parameters
Node Parameters
Name | Type | Default Value | Description |
---|---|---|---|
input_frame |
string | ” “ | input frame id |
output_frame |
string | ” “ | output frame id |
max_queue_size |
int | 5 | max queue size of input/output topics |
use_indices |
bool | false | flag to use pointcloud indices |
latched_indices |
bool | false | flag to latch pointcloud indices |
approximate_sync |
bool | false | flag to use approximate sync option |
Assumptions / Known limits
autoware::pointcloud_preprocessor::Filter
is implemented based on pcl_perception [1] because
of this issue.
Measuring the performance
In Autoware, point cloud data from each LiDAR sensor undergoes preprocessing in the sensing pipeline before being input into the perception pipeline. The preprocessing stages are illustrated in the diagram below:
Each stage in the pipeline incurs a processing delay. Mostly, we’ve used ros2 topic delay /topic_name
to measure
the time between the message header and the current time. This approach works well for small-sized messages. However,
when dealing with large point cloud messages, this method introduces an additional delay. This is primarily because
accessing these large point cloud messages externally impacts the pipeline’s performance.
Our sensing/perception nodes are designed to run within composable node containers, leveraging intra-process communication. External subscriptions to these messages (like using ros2 topic delay or rviz2) impose extra delays and can even slow down the pipeline by subscribing externally. Therefore, these measurements will not be accurate.
To mitigate this issue, we’ve adopted a method where each node in the pipeline reports its pipeline latency time. This approach ensures the integrity of intra-process communication and provides a more accurate measure of delays in the pipeline.
Benchmarking The Pipeline
The nodes within the pipeline report the pipeline latency time, indicating the duration from the sensor driver’s pointcloud output to the node’s output. This data is crucial for assessing the pipeline’s health and efficiency.
When running Autoware, you can monitor the pipeline latency times for each node in the pipeline by subscribing to the following ROS 2 topics:
/sensing/lidar/LidarX/crop_box_filter_self/debug/pipeline_latency_ms
/sensing/lidar/LidarX/crop_box_filter_mirror/debug/pipeline_latency_ms
/sensing/lidar/LidarX/distortion_corrector/debug/pipeline_latency_ms
/sensing/lidar/LidarX/ring_outlier_filter/debug/pipeline_latency_ms
/sensing/lidar/concatenate_data_synchronizer/debug/sensing/lidar/LidarX/pointcloud/pipeline_latency_ms
These topics provide the pipeline latency times, giving insights into the delays at various stages of the pipeline from the sensor output of LidarX to each subsequent node.
File truncated at 100 lines see the full file
Changelog for package autoware_pointcloud_preprocessor
0.47.0 (2025-08-11)
-
refactor(pointcloud_preprocessor): extract downsample logic from pickup_based_voxel_downsample_filter (#11098)
- feat(pointcloud_preprocessor): add voxel size struct and downsampling function to pickup based filter
- refactor(pointcloud_preprocessor): use point_cloud2_iterator to handle pointcloud
- refactor(pointcloud_preprocessor): pass VoxelSize by const reference to improve performance
- feat(pointcloud_preprocessor): enhance voxel grid downsampling tests with additional scenarios
- feat(pointcloud_preprocessor): refactor downsampling logic to extract unique voxel point indices and copy filtered points
- fix(pointcloud_preprocessor): optimize voxel point index extraction and memory copying in downsampling
- refactor(pointcloud_preprocessor): rename voxel_map to index_map for clarity in downsampling functions
- refactor(pointcloud_preprocessor): remove unused includes
- chore(pointcloud_preprocessor): apply clang-format and cpplint
- chore(pointcloud_preprocessor): fix linter error
- style(pre-commit): autofix
- style(poincloud_preprocessor): adjust clang-format directives for consistency
- fix(pointcloud_preprocessor): correct function name from copy_filtered_point to copy_filtered_points
- fix(pointcloud_preprocessor): update parameter type from ConstSharedPtr to reference
* refactor(pointcloud_preprocessor): consolidate voxel size parameters into a single struct ---------Co-authored-by: Takahisa.Ishikawa <<takahisa.ishikawa@tier4.jp>> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info (#10851)
- feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info
- style(pre-commit): autofix
- feat(autoware_cuda_pointcloud_preprocessor): handle concatenated pointcloud meta info
- feat(autoware_pointcloud_preprocessor): serialized config of matching strategy
- feat(autoware_pointcloud_preprocessor): update msg
- feat(autoware_pointcloud_preprocessor): update msg (2)
- docs(autoware_pointcloud_preprocessor): add cloud info topic description
- feat(autoware_pointcloud_preprocessor): add unit tests for cloud info
- fix(autoware_pointcloud_preprocessor): pre-commit
- fix(autoware_pointcloud_preprocessor): remove *_struct headers inclusion
- fix(autoware_pointcloud_preprocessor): check if the matching strategy cannot be enumerated
- test(autoware_pointcloud_preprocessor): full cloud repr
- feat(autoware_pointcloud_preprocessor): auto success set & more unit tests
- feat(autoware_pointcloud_preprocessor): publish info regardless cloud content
- style(autoware_pointcloud_preprocessor): typo
- feat(autoware_pointcloud_preprocessor): make update_concatenated_point_cloud_config static for easier integration
* docs(autoware_pointcloud_preprocessor): typo Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>
- fix(autoware_pointcloud_preprocessor): publish cloud info out of condition block
- fix(autoware_pointcloud_preprocessor): container access with safe bound checking
- style(autoware_pointcloud_preprocessor): unify naming convention (part 1 - content)
- style(autoware_pointcloud_preprocessor): unify naming convention (part 2 - files name)
- style(autoware_pointcloud_preprocessor): naming convention for main API
- doc(autoware_pointcloud_preprocessor): add docstring
* feat(autoware_pointcloud_preprocessor): add remap to launch files ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>
-
fix(pointcloud_preprocessor): handle empty pointclouds in pickup_based_downsample_filter (#11003)
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Launch files
- launch/approximate_downsample_filter.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/approximate_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- approximate_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/approximate_downsample_filter_node.param.yaml]
- launch/blockage_diag_node.launch.xml
-
- input_topic_name [default: pointcloud_raw_ex]
- output_topic_name [default: blockage_diag/pointcloud]
- blockage_diagnostics_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/blockage_diag_node.param.yaml]
- launch/concatenate_and_time_sync_node.launch.xml
-
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- output [default: /sensing/lidar/concatenated/pointcloud]
- output_info [default: /sensing/lidar/concatenated/pointcloud_info]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_and_time_sync_node.param.yaml]
- launch/concatenate_pointcloud.launch.xml
-
- output [default: /sensing/lidar/concatenated/pointcloud]
- output_info [default: /sensing/lidar/concatenated/pointcloud_info]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_pointclouds.param.yaml]
- launch/crop_box_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/self_cropped/pointcloud_ex]
- input_frame [default: base_link]
- output_frame [default: base_link]
- crop_box_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/crop_box_filter_node.param.yaml]
- launch/distortion_corrector_node.launch.xml
-
- input/pointcloud [default: /sensing/lidar/top/mirror_cropped/pointcloud_ex]
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- input/imu [default: /sensing/imu/imu_data]
- output/pointcloud [default: /sensing/lidar/top/rectified/pointcloud_ex]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/distortion_corrector_node.param.yaml]
- launch/dual_return_outlier_filter_node.launch.xml
-
- input_topic_name [default: /pointcloud]
- output_topic_name [default: /pointcloud_filtered]
- input_frame [default: ]
- output_frame [default: ]
- dual_return_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/dual_return_outlier_filter_node.param.yaml]
- launch/lanelet2_map_filter_node.launch.xml
-
- input_vector_map [default: /map/vector_map]
- input_pointcloud [default: detection_area/pointcloud]
- output_pointcloud [default: vector_map_filtered/pointcloud]
- lanelet2_map_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/lanelet2_map_filter_node.param.yaml]
- launch/pickup_based_voxel_grid_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/pickup_based_voxel_grid_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- pickup_based_voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pickup_based_voxel_grid_downsample_filter_node.param.yaml]
- launch/pointcloud_accumulator_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud]
- output_topic_name [default: /sensing/lidar/top/pointcloud_accumulated]
- input_frame [default: base_link]
- output_frame [default: base_link]
- pointcloud_accumulator_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pointcloud_accumulator_node.param.yaml]
- launch/preprocessor.launch.xml
-
- input_points_raw_list [default: ['/points_raw']]
- output_points_raw [default: /points_raw/cropbox/filtered]
- tf_output_frame [default: base_link]
- launch/radius_search_2d_outlier_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/pointcloud_filtered]
- input_frame [default: base_link]
- output_frame [default: base_link]
- radius_search_2d_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/radius_search_2d_outlier_filter_node.param.yaml]
- launch/random_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/random_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- random_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/random_downsample_filter_node.param.yaml]
- launch/ring_outlier_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/pointcloud_ring_filtered]
- input_frame [default: ]
- output_frame [default: ]
- ring_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/ring_outlier_filter_node.param.yaml]
- launch/ring_passthrough_filter.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/ring_passthrough_filtered/pointcloud]
- input_frame [default: ]
- output_frame [default: base_link]
- passthrough_filter_uint16_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/passthrough_filter_uint16_node.param.yaml]
- launch/time_synchronizer_node.launch.xml
-
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/time_synchronizer_node.param.yaml]
- launch/vector_map_inside_area_filter_node.launch.xml
-
- input_vector_map [default: /map/vector_map]
- input_pointcloud [default: compare_map_filtered/pointcloud]
- output_pointcloud [default: vector_map_inside_area_filtered/pointcloud]
- vector_map_inside_area_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/vector_map_inside_area_filter_node.param.yaml]
- launch/voxel_grid_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/voxel_grid_downsample_filter/pointcloud]
- input_frame [default: base_link]
- output_frame [default: base_link]
- voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_downsample_filter_node.param.yaml]
- launch/voxel_grid_outlier_filter_node.launch.xml
-
- input_topic_name [default: /pointcloud_raw]
- output_topic_name [default: /pointcloud_filtered]
- input_frame [default: ]
- output_frame [default: ]
- voxel_grid_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_outlier_filter_node.param.yaml]
Messages
Services
Plugins
Recent questions tagged autoware_pointcloud_preprocessor at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- amc-nu
- Yukihiro Saito
- Kyoichi Sugahara
- Dai Nguyen
- Kenzo Lobos-Tsunekawa
- Yihsiang Fang
- Yoshi Ri
- David Wong
- Melike Tanrikulu
- Max Schmeller
- Kaan Colak
Authors
- Open Perception
- Julius Kammerl
- William Woodall
autoware_pointcloud_preprocessor
Purpose
The autoware_pointcloud_preprocessor
is a package that includes the following filters:
- removing outlier points
- cropping
- concatenating pointclouds
- correcting distortion
- downsampling
- densifying pointclouds
Inner-workings / Algorithms
Detail description of each filter’s algorithm is in the following links.
Filter Name | Description | Detail |
---|---|---|
concatenate_data | subscribe multiple pointclouds and concatenate them into a pointcloud | link |
crop_box_filter | remove points within a given box | link |
distortion_corrector | compensate pointcloud distortion caused by ego vehicle’s movement during 1 scan | link |
downsample_filter | downsampling input pointcloud | link |
outlier_filter | remove points caused by hardware problems, rain drops and small insects as a noise | link |
passthrough_filter | remove points on the outside of a range in given field (e.g. x, y, z, intensity) | link |
pointcloud_accumulator | accumulate pointclouds for a given amount of time | link |
pointcloud_densifier | enhance sparse point clouds by using information from previous frames | link |
vector_map_filter | remove points on the outside of lane by using vector map | link |
vector_map_inside_area_filter | remove points inside of vector map area that has given type by parameter | link |
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
~/input/points |
sensor_msgs::msg::PointCloud2 |
reference points |
~/input/indices |
pcl_msgs::msg::Indices |
reference indices |
Output
Name | Type | Description |
---|---|---|
~/output/points |
sensor_msgs::msg::PointCloud2 |
filtered points |
Parameters
Node Parameters
Name | Type | Default Value | Description |
---|---|---|---|
input_frame |
string | ” “ | input frame id |
output_frame |
string | ” “ | output frame id |
max_queue_size |
int | 5 | max queue size of input/output topics |
use_indices |
bool | false | flag to use pointcloud indices |
latched_indices |
bool | false | flag to latch pointcloud indices |
approximate_sync |
bool | false | flag to use approximate sync option |
Assumptions / Known limits
autoware::pointcloud_preprocessor::Filter
is implemented based on pcl_perception [1] because
of this issue.
Measuring the performance
In Autoware, point cloud data from each LiDAR sensor undergoes preprocessing in the sensing pipeline before being input into the perception pipeline. The preprocessing stages are illustrated in the diagram below:
Each stage in the pipeline incurs a processing delay. Mostly, we’ve used ros2 topic delay /topic_name
to measure
the time between the message header and the current time. This approach works well for small-sized messages. However,
when dealing with large point cloud messages, this method introduces an additional delay. This is primarily because
accessing these large point cloud messages externally impacts the pipeline’s performance.
Our sensing/perception nodes are designed to run within composable node containers, leveraging intra-process communication. External subscriptions to these messages (like using ros2 topic delay or rviz2) impose extra delays and can even slow down the pipeline by subscribing externally. Therefore, these measurements will not be accurate.
To mitigate this issue, we’ve adopted a method where each node in the pipeline reports its pipeline latency time. This approach ensures the integrity of intra-process communication and provides a more accurate measure of delays in the pipeline.
Benchmarking The Pipeline
The nodes within the pipeline report the pipeline latency time, indicating the duration from the sensor driver’s pointcloud output to the node’s output. This data is crucial for assessing the pipeline’s health and efficiency.
When running Autoware, you can monitor the pipeline latency times for each node in the pipeline by subscribing to the following ROS 2 topics:
/sensing/lidar/LidarX/crop_box_filter_self/debug/pipeline_latency_ms
/sensing/lidar/LidarX/crop_box_filter_mirror/debug/pipeline_latency_ms
/sensing/lidar/LidarX/distortion_corrector/debug/pipeline_latency_ms
/sensing/lidar/LidarX/ring_outlier_filter/debug/pipeline_latency_ms
/sensing/lidar/concatenate_data_synchronizer/debug/sensing/lidar/LidarX/pointcloud/pipeline_latency_ms
These topics provide the pipeline latency times, giving insights into the delays at various stages of the pipeline from the sensor output of LidarX to each subsequent node.
File truncated at 100 lines see the full file
Changelog for package autoware_pointcloud_preprocessor
0.47.0 (2025-08-11)
-
refactor(pointcloud_preprocessor): extract downsample logic from pickup_based_voxel_downsample_filter (#11098)
- feat(pointcloud_preprocessor): add voxel size struct and downsampling function to pickup based filter
- refactor(pointcloud_preprocessor): use point_cloud2_iterator to handle pointcloud
- refactor(pointcloud_preprocessor): pass VoxelSize by const reference to improve performance
- feat(pointcloud_preprocessor): enhance voxel grid downsampling tests with additional scenarios
- feat(pointcloud_preprocessor): refactor downsampling logic to extract unique voxel point indices and copy filtered points
- fix(pointcloud_preprocessor): optimize voxel point index extraction and memory copying in downsampling
- refactor(pointcloud_preprocessor): rename voxel_map to index_map for clarity in downsampling functions
- refactor(pointcloud_preprocessor): remove unused includes
- chore(pointcloud_preprocessor): apply clang-format and cpplint
- chore(pointcloud_preprocessor): fix linter error
- style(pre-commit): autofix
- style(poincloud_preprocessor): adjust clang-format directives for consistency
- fix(pointcloud_preprocessor): correct function name from copy_filtered_point to copy_filtered_points
- fix(pointcloud_preprocessor): update parameter type from ConstSharedPtr to reference
* refactor(pointcloud_preprocessor): consolidate voxel size parameters into a single struct ---------Co-authored-by: Takahisa.Ishikawa <<takahisa.ishikawa@tier4.jp>> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info (#10851)
- feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info
- style(pre-commit): autofix
- feat(autoware_cuda_pointcloud_preprocessor): handle concatenated pointcloud meta info
- feat(autoware_pointcloud_preprocessor): serialized config of matching strategy
- feat(autoware_pointcloud_preprocessor): update msg
- feat(autoware_pointcloud_preprocessor): update msg (2)
- docs(autoware_pointcloud_preprocessor): add cloud info topic description
- feat(autoware_pointcloud_preprocessor): add unit tests for cloud info
- fix(autoware_pointcloud_preprocessor): pre-commit
- fix(autoware_pointcloud_preprocessor): remove *_struct headers inclusion
- fix(autoware_pointcloud_preprocessor): check if the matching strategy cannot be enumerated
- test(autoware_pointcloud_preprocessor): full cloud repr
- feat(autoware_pointcloud_preprocessor): auto success set & more unit tests
- feat(autoware_pointcloud_preprocessor): publish info regardless cloud content
- style(autoware_pointcloud_preprocessor): typo
- feat(autoware_pointcloud_preprocessor): make update_concatenated_point_cloud_config static for easier integration
* docs(autoware_pointcloud_preprocessor): typo Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>
- fix(autoware_pointcloud_preprocessor): publish cloud info out of condition block
- fix(autoware_pointcloud_preprocessor): container access with safe bound checking
- style(autoware_pointcloud_preprocessor): unify naming convention (part 1 - content)
- style(autoware_pointcloud_preprocessor): unify naming convention (part 2 - files name)
- style(autoware_pointcloud_preprocessor): naming convention for main API
- doc(autoware_pointcloud_preprocessor): add docstring
* feat(autoware_pointcloud_preprocessor): add remap to launch files ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>
-
fix(pointcloud_preprocessor): handle empty pointclouds in pickup_based_downsample_filter (#11003)
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Launch files
- launch/approximate_downsample_filter.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/approximate_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- approximate_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/approximate_downsample_filter_node.param.yaml]
- launch/blockage_diag_node.launch.xml
-
- input_topic_name [default: pointcloud_raw_ex]
- output_topic_name [default: blockage_diag/pointcloud]
- blockage_diagnostics_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/blockage_diag_node.param.yaml]
- launch/concatenate_and_time_sync_node.launch.xml
-
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- output [default: /sensing/lidar/concatenated/pointcloud]
- output_info [default: /sensing/lidar/concatenated/pointcloud_info]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_and_time_sync_node.param.yaml]
- launch/concatenate_pointcloud.launch.xml
-
- output [default: /sensing/lidar/concatenated/pointcloud]
- output_info [default: /sensing/lidar/concatenated/pointcloud_info]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_pointclouds.param.yaml]
- launch/crop_box_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/self_cropped/pointcloud_ex]
- input_frame [default: base_link]
- output_frame [default: base_link]
- crop_box_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/crop_box_filter_node.param.yaml]
- launch/distortion_corrector_node.launch.xml
-
- input/pointcloud [default: /sensing/lidar/top/mirror_cropped/pointcloud_ex]
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- input/imu [default: /sensing/imu/imu_data]
- output/pointcloud [default: /sensing/lidar/top/rectified/pointcloud_ex]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/distortion_corrector_node.param.yaml]
- launch/dual_return_outlier_filter_node.launch.xml
-
- input_topic_name [default: /pointcloud]
- output_topic_name [default: /pointcloud_filtered]
- input_frame [default: ]
- output_frame [default: ]
- dual_return_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/dual_return_outlier_filter_node.param.yaml]
- launch/lanelet2_map_filter_node.launch.xml
-
- input_vector_map [default: /map/vector_map]
- input_pointcloud [default: detection_area/pointcloud]
- output_pointcloud [default: vector_map_filtered/pointcloud]
- lanelet2_map_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/lanelet2_map_filter_node.param.yaml]
- launch/pickup_based_voxel_grid_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/pickup_based_voxel_grid_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- pickup_based_voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pickup_based_voxel_grid_downsample_filter_node.param.yaml]
- launch/pointcloud_accumulator_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud]
- output_topic_name [default: /sensing/lidar/top/pointcloud_accumulated]
- input_frame [default: base_link]
- output_frame [default: base_link]
- pointcloud_accumulator_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pointcloud_accumulator_node.param.yaml]
- launch/preprocessor.launch.xml
-
- input_points_raw_list [default: ['/points_raw']]
- output_points_raw [default: /points_raw/cropbox/filtered]
- tf_output_frame [default: base_link]
- launch/radius_search_2d_outlier_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/pointcloud_filtered]
- input_frame [default: base_link]
- output_frame [default: base_link]
- radius_search_2d_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/radius_search_2d_outlier_filter_node.param.yaml]
- launch/random_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/random_downsample_filter/pointcloud]
- input_frame [default: ]
- output_frame [default: ]
- random_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/random_downsample_filter_node.param.yaml]
- launch/ring_outlier_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
- output_topic_name [default: /sensing/lidar/top/pointcloud_ring_filtered]
- input_frame [default: ]
- output_frame [default: ]
- ring_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/ring_outlier_filter_node.param.yaml]
- launch/ring_passthrough_filter.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/ring_passthrough_filtered/pointcloud]
- input_frame [default: ]
- output_frame [default: base_link]
- passthrough_filter_uint16_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/passthrough_filter_uint16_node.param.yaml]
- launch/time_synchronizer_node.launch.xml
-
- input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
- param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/time_synchronizer_node.param.yaml]
- launch/vector_map_inside_area_filter_node.launch.xml
-
- input_vector_map [default: /map/vector_map]
- input_pointcloud [default: compare_map_filtered/pointcloud]
- output_pointcloud [default: vector_map_inside_area_filtered/pointcloud]
- vector_map_inside_area_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/vector_map_inside_area_filter_node.param.yaml]
- launch/voxel_grid_downsample_filter_node.launch.xml
-
- input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
- output_topic_name [default: /sensing/lidar/top/voxel_grid_downsample_filter/pointcloud]
- input_frame [default: base_link]
- output_frame [default: base_link]
- voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_downsample_filter_node.param.yaml]
- launch/voxel_grid_outlier_filter_node.launch.xml
-
- input_topic_name [default: /pointcloud_raw]
- output_topic_name [default: /pointcloud_filtered]
- input_frame [default: ]
- output_frame [default: ]
- voxel_grid_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_outlier_filter_node.param.yaml]