No version for distro humble showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_pointcloud_preprocessor package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

The ROS 2 autoware_pointcloud_preprocessor package

Additional Links

No additional links.

Maintainers

  • amc-nu
  • Yukihiro Saito
  • Kyoichi Sugahara
  • Dai Nguyen
  • Kenzo Lobos-Tsunekawa
  • Yihsiang Fang
  • Yoshi Ri
  • David Wong
  • Melike Tanrikulu
  • Max Schmeller
  • Kaan Colak

Authors

  • Open Perception
  • Julius Kammerl
  • William Woodall

autoware_pointcloud_preprocessor

Purpose

The autoware_pointcloud_preprocessor is a package that includes the following filters:

  • removing outlier points
  • cropping
  • concatenating pointclouds
  • correcting distortion
  • downsampling
  • densifying pointclouds

Inner-workings / Algorithms

Detail description of each filter’s algorithm is in the following links.

Filter Name Description Detail
concatenate_data subscribe multiple pointclouds and concatenate them into a pointcloud link
crop_box_filter remove points within a given box link
distortion_corrector compensate pointcloud distortion caused by ego vehicle’s movement during 1 scan link
downsample_filter downsampling input pointcloud link
outlier_filter remove points caused by hardware problems, rain drops and small insects as a noise link
passthrough_filter remove points on the outside of a range in given field (e.g. x, y, z, intensity) link
pointcloud_accumulator accumulate pointclouds for a given amount of time link
pointcloud_densifier enhance sparse point clouds by using information from previous frames link
vector_map_filter remove points on the outside of lane by using vector map link
vector_map_inside_area_filter remove points inside of vector map area that has given type by parameter link

Inputs / Outputs

Input

Name Type Description
~/input/points sensor_msgs::msg::PointCloud2 reference points
~/input/indices pcl_msgs::msg::Indices reference indices

Output

Name Type Description
~/output/points sensor_msgs::msg::PointCloud2 filtered points

Parameters

Node Parameters

Name Type Default Value Description
input_frame string ” “ input frame id
output_frame string ” “ output frame id
max_queue_size int 5 max queue size of input/output topics
use_indices bool false flag to use pointcloud indices
latched_indices bool false flag to latch pointcloud indices
approximate_sync bool false flag to use approximate sync option

Assumptions / Known limits

autoware::pointcloud_preprocessor::Filter is implemented based on pcl_perception [1] because of this issue.

Measuring the performance

In Autoware, point cloud data from each LiDAR sensor undergoes preprocessing in the sensing pipeline before being input into the perception pipeline. The preprocessing stages are illustrated in the diagram below:

pointcloud_preprocess_pipeline.drawio.png

Each stage in the pipeline incurs a processing delay. Mostly, we’ve used ros2 topic delay /topic_name to measure the time between the message header and the current time. This approach works well for small-sized messages. However, when dealing with large point cloud messages, this method introduces an additional delay. This is primarily because accessing these large point cloud messages externally impacts the pipeline’s performance.

Our sensing/perception nodes are designed to run within composable node containers, leveraging intra-process communication. External subscriptions to these messages (like using ros2 topic delay or rviz2) impose extra delays and can even slow down the pipeline by subscribing externally. Therefore, these measurements will not be accurate.

To mitigate this issue, we’ve adopted a method where each node in the pipeline reports its pipeline latency time. This approach ensures the integrity of intra-process communication and provides a more accurate measure of delays in the pipeline.

Benchmarking The Pipeline

The nodes within the pipeline report the pipeline latency time, indicating the duration from the sensor driver’s pointcloud output to the node’s output. This data is crucial for assessing the pipeline’s health and efficiency.

When running Autoware, you can monitor the pipeline latency times for each node in the pipeline by subscribing to the following ROS 2 topics:

  • /sensing/lidar/LidarX/crop_box_filter_self/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/crop_box_filter_mirror/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/distortion_corrector/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/ring_outlier_filter/debug/pipeline_latency_ms
  • /sensing/lidar/concatenate_data_synchronizer/debug/sensing/lidar/LidarX/pointcloud/pipeline_latency_ms

These topics provide the pipeline latency times, giving insights into the delays at various stages of the pipeline from the sensor output of LidarX to each subsequent node.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_pointcloud_preprocessor

0.47.0 (2025-08-11)

  • refactor(pointcloud_preprocessor): extract downsample logic from pickup_based_voxel_downsample_filter (#11098)

    • feat(pointcloud_preprocessor): add voxel size struct and downsampling function to pickup based filter
    • refactor(pointcloud_preprocessor): use point_cloud2_iterator to handle pointcloud
    • refactor(pointcloud_preprocessor): pass VoxelSize by const reference to improve performance
    • feat(pointcloud_preprocessor): enhance voxel grid downsampling tests with additional scenarios
    • feat(pointcloud_preprocessor): refactor downsampling logic to extract unique voxel point indices and copy filtered points
    • fix(pointcloud_preprocessor): optimize voxel point index extraction and memory copying in downsampling
    • refactor(pointcloud_preprocessor): rename voxel_map to index_map for clarity in downsampling functions
    • refactor(pointcloud_preprocessor): remove unused includes
    • chore(pointcloud_preprocessor): apply clang-format and cpplint
    • chore(pointcloud_preprocessor): fix linter error
    • style(pre-commit): autofix
    • style(poincloud_preprocessor): adjust clang-format directives for consistency
    • fix(pointcloud_preprocessor): correct function name from copy_filtered_point to copy_filtered_points
    • fix(pointcloud_preprocessor): update parameter type from ConstSharedPtr to reference

    * refactor(pointcloud_preprocessor): consolidate voxel size parameters into a single struct ---------Co-authored-by: Takahisa.Ishikawa <<takahisa.ishikawa@tier4.jp>> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info (#10851)

    • feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info
    • style(pre-commit): autofix
    • feat(autoware_cuda_pointcloud_preprocessor): handle concatenated pointcloud meta info
    • feat(autoware_pointcloud_preprocessor): serialized config of matching strategy
    • feat(autoware_pointcloud_preprocessor): update msg
    • feat(autoware_pointcloud_preprocessor): update msg (2)
    • docs(autoware_pointcloud_preprocessor): add cloud info topic description
    • feat(autoware_pointcloud_preprocessor): add unit tests for cloud info
    • fix(autoware_pointcloud_preprocessor): pre-commit
    • fix(autoware_pointcloud_preprocessor): remove *_struct headers inclusion
    • fix(autoware_pointcloud_preprocessor): check if the matching strategy cannot be enumerated
    • test(autoware_pointcloud_preprocessor): full cloud repr
    • feat(autoware_pointcloud_preprocessor): auto success set & more unit tests
    • feat(autoware_pointcloud_preprocessor): publish info regardless cloud content
    • style(autoware_pointcloud_preprocessor): typo
    • feat(autoware_pointcloud_preprocessor): make update_concatenated_point_cloud_config static for easier integration

    * docs(autoware_pointcloud_preprocessor): typo Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>

    • fix(autoware_pointcloud_preprocessor): publish cloud info out of condition block
    • fix(autoware_pointcloud_preprocessor): container access with safe bound checking
    • style(autoware_pointcloud_preprocessor): unify naming convention (part 1 - content)
    • style(autoware_pointcloud_preprocessor): unify naming convention (part 2 - files name)
    • style(autoware_pointcloud_preprocessor): naming convention for main API
    • doc(autoware_pointcloud_preprocessor): add docstring

    * feat(autoware_pointcloud_preprocessor): add remap to launch files ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>

  • fix(pointcloud_preprocessor): handle empty pointclouds in pickup_based_downsample_filter (#11003)

File truncated at 100 lines see the full file

Launch files

  • launch/approximate_downsample_filter.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/approximate_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • approximate_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/approximate_downsample_filter_node.param.yaml]
  • launch/blockage_diag_node.launch.xml
      • input_topic_name [default: pointcloud_raw_ex]
      • output_topic_name [default: blockage_diag/pointcloud]
      • blockage_diagnostics_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/blockage_diag_node.param.yaml]
  • launch/concatenate_and_time_sync_node.launch.xml
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • output [default: /sensing/lidar/concatenated/pointcloud]
      • output_info [default: /sensing/lidar/concatenated/pointcloud_info]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_and_time_sync_node.param.yaml]
  • launch/concatenate_pointcloud.launch.xml
      • output [default: /sensing/lidar/concatenated/pointcloud]
      • output_info [default: /sensing/lidar/concatenated/pointcloud_info]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_pointclouds.param.yaml]
  • launch/crop_box_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/self_cropped/pointcloud_ex]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • crop_box_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/crop_box_filter_node.param.yaml]
  • launch/distortion_corrector_node.launch.xml
      • input/pointcloud [default: /sensing/lidar/top/mirror_cropped/pointcloud_ex]
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • input/imu [default: /sensing/imu/imu_data]
      • output/pointcloud [default: /sensing/lidar/top/rectified/pointcloud_ex]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/distortion_corrector_node.param.yaml]
  • launch/dual_return_outlier_filter_node.launch.xml
      • input_topic_name [default: /pointcloud]
      • output_topic_name [default: /pointcloud_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • dual_return_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/dual_return_outlier_filter_node.param.yaml]
  • launch/lanelet2_map_filter_node.launch.xml
      • input_vector_map [default: /map/vector_map]
      • input_pointcloud [default: detection_area/pointcloud]
      • output_pointcloud [default: vector_map_filtered/pointcloud]
      • lanelet2_map_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/lanelet2_map_filter_node.param.yaml]
  • launch/pickup_based_voxel_grid_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/pickup_based_voxel_grid_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • pickup_based_voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pickup_based_voxel_grid_downsample_filter_node.param.yaml]
  • launch/pointcloud_accumulator_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_accumulated]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • pointcloud_accumulator_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pointcloud_accumulator_node.param.yaml]
  • launch/preprocessor.launch.xml
      • input_points_raw_list [default: ['/points_raw']]
      • output_points_raw [default: /points_raw/cropbox/filtered]
      • tf_output_frame [default: base_link]
  • launch/radius_search_2d_outlier_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_filtered]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • radius_search_2d_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/radius_search_2d_outlier_filter_node.param.yaml]
  • launch/random_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/random_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • random_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/random_downsample_filter_node.param.yaml]
  • launch/ring_outlier_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_ring_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • ring_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/ring_outlier_filter_node.param.yaml]
  • launch/ring_passthrough_filter.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/ring_passthrough_filtered/pointcloud]
      • input_frame [default: ]
      • output_frame [default: base_link]
      • passthrough_filter_uint16_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/passthrough_filter_uint16_node.param.yaml]
  • launch/time_synchronizer_node.launch.xml
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/time_synchronizer_node.param.yaml]
  • launch/vector_map_inside_area_filter_node.launch.xml
      • input_vector_map [default: /map/vector_map]
      • input_pointcloud [default: compare_map_filtered/pointcloud]
      • output_pointcloud [default: vector_map_inside_area_filtered/pointcloud]
      • vector_map_inside_area_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/vector_map_inside_area_filter_node.param.yaml]
  • launch/voxel_grid_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/voxel_grid_downsample_filter/pointcloud]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_downsample_filter_node.param.yaml]
  • launch/voxel_grid_outlier_filter_node.launch.xml
      • input_topic_name [default: /pointcloud_raw]
      • output_topic_name [default: /pointcloud_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • voxel_grid_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_outlier_filter_node.param.yaml]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_pointcloud_preprocessor at Robotics Stack Exchange

No version for distro jazzy showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_pointcloud_preprocessor package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

The ROS 2 autoware_pointcloud_preprocessor package

Additional Links

No additional links.

Maintainers

  • amc-nu
  • Yukihiro Saito
  • Kyoichi Sugahara
  • Dai Nguyen
  • Kenzo Lobos-Tsunekawa
  • Yihsiang Fang
  • Yoshi Ri
  • David Wong
  • Melike Tanrikulu
  • Max Schmeller
  • Kaan Colak

Authors

  • Open Perception
  • Julius Kammerl
  • William Woodall

autoware_pointcloud_preprocessor

Purpose

The autoware_pointcloud_preprocessor is a package that includes the following filters:

  • removing outlier points
  • cropping
  • concatenating pointclouds
  • correcting distortion
  • downsampling
  • densifying pointclouds

Inner-workings / Algorithms

Detail description of each filter’s algorithm is in the following links.

Filter Name Description Detail
concatenate_data subscribe multiple pointclouds and concatenate them into a pointcloud link
crop_box_filter remove points within a given box link
distortion_corrector compensate pointcloud distortion caused by ego vehicle’s movement during 1 scan link
downsample_filter downsampling input pointcloud link
outlier_filter remove points caused by hardware problems, rain drops and small insects as a noise link
passthrough_filter remove points on the outside of a range in given field (e.g. x, y, z, intensity) link
pointcloud_accumulator accumulate pointclouds for a given amount of time link
pointcloud_densifier enhance sparse point clouds by using information from previous frames link
vector_map_filter remove points on the outside of lane by using vector map link
vector_map_inside_area_filter remove points inside of vector map area that has given type by parameter link

Inputs / Outputs

Input

Name Type Description
~/input/points sensor_msgs::msg::PointCloud2 reference points
~/input/indices pcl_msgs::msg::Indices reference indices

Output

Name Type Description
~/output/points sensor_msgs::msg::PointCloud2 filtered points

Parameters

Node Parameters

Name Type Default Value Description
input_frame string ” “ input frame id
output_frame string ” “ output frame id
max_queue_size int 5 max queue size of input/output topics
use_indices bool false flag to use pointcloud indices
latched_indices bool false flag to latch pointcloud indices
approximate_sync bool false flag to use approximate sync option

Assumptions / Known limits

autoware::pointcloud_preprocessor::Filter is implemented based on pcl_perception [1] because of this issue.

Measuring the performance

In Autoware, point cloud data from each LiDAR sensor undergoes preprocessing in the sensing pipeline before being input into the perception pipeline. The preprocessing stages are illustrated in the diagram below:

pointcloud_preprocess_pipeline.drawio.png

Each stage in the pipeline incurs a processing delay. Mostly, we’ve used ros2 topic delay /topic_name to measure the time between the message header and the current time. This approach works well for small-sized messages. However, when dealing with large point cloud messages, this method introduces an additional delay. This is primarily because accessing these large point cloud messages externally impacts the pipeline’s performance.

Our sensing/perception nodes are designed to run within composable node containers, leveraging intra-process communication. External subscriptions to these messages (like using ros2 topic delay or rviz2) impose extra delays and can even slow down the pipeline by subscribing externally. Therefore, these measurements will not be accurate.

To mitigate this issue, we’ve adopted a method where each node in the pipeline reports its pipeline latency time. This approach ensures the integrity of intra-process communication and provides a more accurate measure of delays in the pipeline.

Benchmarking The Pipeline

The nodes within the pipeline report the pipeline latency time, indicating the duration from the sensor driver’s pointcloud output to the node’s output. This data is crucial for assessing the pipeline’s health and efficiency.

When running Autoware, you can monitor the pipeline latency times for each node in the pipeline by subscribing to the following ROS 2 topics:

  • /sensing/lidar/LidarX/crop_box_filter_self/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/crop_box_filter_mirror/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/distortion_corrector/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/ring_outlier_filter/debug/pipeline_latency_ms
  • /sensing/lidar/concatenate_data_synchronizer/debug/sensing/lidar/LidarX/pointcloud/pipeline_latency_ms

These topics provide the pipeline latency times, giving insights into the delays at various stages of the pipeline from the sensor output of LidarX to each subsequent node.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_pointcloud_preprocessor

0.47.0 (2025-08-11)

  • refactor(pointcloud_preprocessor): extract downsample logic from pickup_based_voxel_downsample_filter (#11098)

    • feat(pointcloud_preprocessor): add voxel size struct and downsampling function to pickup based filter
    • refactor(pointcloud_preprocessor): use point_cloud2_iterator to handle pointcloud
    • refactor(pointcloud_preprocessor): pass VoxelSize by const reference to improve performance
    • feat(pointcloud_preprocessor): enhance voxel grid downsampling tests with additional scenarios
    • feat(pointcloud_preprocessor): refactor downsampling logic to extract unique voxel point indices and copy filtered points
    • fix(pointcloud_preprocessor): optimize voxel point index extraction and memory copying in downsampling
    • refactor(pointcloud_preprocessor): rename voxel_map to index_map for clarity in downsampling functions
    • refactor(pointcloud_preprocessor): remove unused includes
    • chore(pointcloud_preprocessor): apply clang-format and cpplint
    • chore(pointcloud_preprocessor): fix linter error
    • style(pre-commit): autofix
    • style(poincloud_preprocessor): adjust clang-format directives for consistency
    • fix(pointcloud_preprocessor): correct function name from copy_filtered_point to copy_filtered_points
    • fix(pointcloud_preprocessor): update parameter type from ConstSharedPtr to reference

    * refactor(pointcloud_preprocessor): consolidate voxel size parameters into a single struct ---------Co-authored-by: Takahisa.Ishikawa <<takahisa.ishikawa@tier4.jp>> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info (#10851)

    • feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info
    • style(pre-commit): autofix
    • feat(autoware_cuda_pointcloud_preprocessor): handle concatenated pointcloud meta info
    • feat(autoware_pointcloud_preprocessor): serialized config of matching strategy
    • feat(autoware_pointcloud_preprocessor): update msg
    • feat(autoware_pointcloud_preprocessor): update msg (2)
    • docs(autoware_pointcloud_preprocessor): add cloud info topic description
    • feat(autoware_pointcloud_preprocessor): add unit tests for cloud info
    • fix(autoware_pointcloud_preprocessor): pre-commit
    • fix(autoware_pointcloud_preprocessor): remove *_struct headers inclusion
    • fix(autoware_pointcloud_preprocessor): check if the matching strategy cannot be enumerated
    • test(autoware_pointcloud_preprocessor): full cloud repr
    • feat(autoware_pointcloud_preprocessor): auto success set & more unit tests
    • feat(autoware_pointcloud_preprocessor): publish info regardless cloud content
    • style(autoware_pointcloud_preprocessor): typo
    • feat(autoware_pointcloud_preprocessor): make update_concatenated_point_cloud_config static for easier integration

    * docs(autoware_pointcloud_preprocessor): typo Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>

    • fix(autoware_pointcloud_preprocessor): publish cloud info out of condition block
    • fix(autoware_pointcloud_preprocessor): container access with safe bound checking
    • style(autoware_pointcloud_preprocessor): unify naming convention (part 1 - content)
    • style(autoware_pointcloud_preprocessor): unify naming convention (part 2 - files name)
    • style(autoware_pointcloud_preprocessor): naming convention for main API
    • doc(autoware_pointcloud_preprocessor): add docstring

    * feat(autoware_pointcloud_preprocessor): add remap to launch files ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>

  • fix(pointcloud_preprocessor): handle empty pointclouds in pickup_based_downsample_filter (#11003)

File truncated at 100 lines see the full file

Launch files

  • launch/approximate_downsample_filter.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/approximate_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • approximate_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/approximate_downsample_filter_node.param.yaml]
  • launch/blockage_diag_node.launch.xml
      • input_topic_name [default: pointcloud_raw_ex]
      • output_topic_name [default: blockage_diag/pointcloud]
      • blockage_diagnostics_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/blockage_diag_node.param.yaml]
  • launch/concatenate_and_time_sync_node.launch.xml
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • output [default: /sensing/lidar/concatenated/pointcloud]
      • output_info [default: /sensing/lidar/concatenated/pointcloud_info]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_and_time_sync_node.param.yaml]
  • launch/concatenate_pointcloud.launch.xml
      • output [default: /sensing/lidar/concatenated/pointcloud]
      • output_info [default: /sensing/lidar/concatenated/pointcloud_info]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_pointclouds.param.yaml]
  • launch/crop_box_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/self_cropped/pointcloud_ex]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • crop_box_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/crop_box_filter_node.param.yaml]
  • launch/distortion_corrector_node.launch.xml
      • input/pointcloud [default: /sensing/lidar/top/mirror_cropped/pointcloud_ex]
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • input/imu [default: /sensing/imu/imu_data]
      • output/pointcloud [default: /sensing/lidar/top/rectified/pointcloud_ex]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/distortion_corrector_node.param.yaml]
  • launch/dual_return_outlier_filter_node.launch.xml
      • input_topic_name [default: /pointcloud]
      • output_topic_name [default: /pointcloud_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • dual_return_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/dual_return_outlier_filter_node.param.yaml]
  • launch/lanelet2_map_filter_node.launch.xml
      • input_vector_map [default: /map/vector_map]
      • input_pointcloud [default: detection_area/pointcloud]
      • output_pointcloud [default: vector_map_filtered/pointcloud]
      • lanelet2_map_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/lanelet2_map_filter_node.param.yaml]
  • launch/pickup_based_voxel_grid_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/pickup_based_voxel_grid_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • pickup_based_voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pickup_based_voxel_grid_downsample_filter_node.param.yaml]
  • launch/pointcloud_accumulator_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_accumulated]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • pointcloud_accumulator_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pointcloud_accumulator_node.param.yaml]
  • launch/preprocessor.launch.xml
      • input_points_raw_list [default: ['/points_raw']]
      • output_points_raw [default: /points_raw/cropbox/filtered]
      • tf_output_frame [default: base_link]
  • launch/radius_search_2d_outlier_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_filtered]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • radius_search_2d_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/radius_search_2d_outlier_filter_node.param.yaml]
  • launch/random_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/random_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • random_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/random_downsample_filter_node.param.yaml]
  • launch/ring_outlier_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_ring_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • ring_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/ring_outlier_filter_node.param.yaml]
  • launch/ring_passthrough_filter.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/ring_passthrough_filtered/pointcloud]
      • input_frame [default: ]
      • output_frame [default: base_link]
      • passthrough_filter_uint16_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/passthrough_filter_uint16_node.param.yaml]
  • launch/time_synchronizer_node.launch.xml
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/time_synchronizer_node.param.yaml]
  • launch/vector_map_inside_area_filter_node.launch.xml
      • input_vector_map [default: /map/vector_map]
      • input_pointcloud [default: compare_map_filtered/pointcloud]
      • output_pointcloud [default: vector_map_inside_area_filtered/pointcloud]
      • vector_map_inside_area_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/vector_map_inside_area_filter_node.param.yaml]
  • launch/voxel_grid_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/voxel_grid_downsample_filter/pointcloud]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_downsample_filter_node.param.yaml]
  • launch/voxel_grid_outlier_filter_node.launch.xml
      • input_topic_name [default: /pointcloud_raw]
      • output_topic_name [default: /pointcloud_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • voxel_grid_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_outlier_filter_node.param.yaml]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_pointcloud_preprocessor at Robotics Stack Exchange

No version for distro kilted showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_pointcloud_preprocessor package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

The ROS 2 autoware_pointcloud_preprocessor package

Additional Links

No additional links.

Maintainers

  • amc-nu
  • Yukihiro Saito
  • Kyoichi Sugahara
  • Dai Nguyen
  • Kenzo Lobos-Tsunekawa
  • Yihsiang Fang
  • Yoshi Ri
  • David Wong
  • Melike Tanrikulu
  • Max Schmeller
  • Kaan Colak

Authors

  • Open Perception
  • Julius Kammerl
  • William Woodall

autoware_pointcloud_preprocessor

Purpose

The autoware_pointcloud_preprocessor is a package that includes the following filters:

  • removing outlier points
  • cropping
  • concatenating pointclouds
  • correcting distortion
  • downsampling
  • densifying pointclouds

Inner-workings / Algorithms

Detail description of each filter’s algorithm is in the following links.

Filter Name Description Detail
concatenate_data subscribe multiple pointclouds and concatenate them into a pointcloud link
crop_box_filter remove points within a given box link
distortion_corrector compensate pointcloud distortion caused by ego vehicle’s movement during 1 scan link
downsample_filter downsampling input pointcloud link
outlier_filter remove points caused by hardware problems, rain drops and small insects as a noise link
passthrough_filter remove points on the outside of a range in given field (e.g. x, y, z, intensity) link
pointcloud_accumulator accumulate pointclouds for a given amount of time link
pointcloud_densifier enhance sparse point clouds by using information from previous frames link
vector_map_filter remove points on the outside of lane by using vector map link
vector_map_inside_area_filter remove points inside of vector map area that has given type by parameter link

Inputs / Outputs

Input

Name Type Description
~/input/points sensor_msgs::msg::PointCloud2 reference points
~/input/indices pcl_msgs::msg::Indices reference indices

Output

Name Type Description
~/output/points sensor_msgs::msg::PointCloud2 filtered points

Parameters

Node Parameters

Name Type Default Value Description
input_frame string ” “ input frame id
output_frame string ” “ output frame id
max_queue_size int 5 max queue size of input/output topics
use_indices bool false flag to use pointcloud indices
latched_indices bool false flag to latch pointcloud indices
approximate_sync bool false flag to use approximate sync option

Assumptions / Known limits

autoware::pointcloud_preprocessor::Filter is implemented based on pcl_perception [1] because of this issue.

Measuring the performance

In Autoware, point cloud data from each LiDAR sensor undergoes preprocessing in the sensing pipeline before being input into the perception pipeline. The preprocessing stages are illustrated in the diagram below:

pointcloud_preprocess_pipeline.drawio.png

Each stage in the pipeline incurs a processing delay. Mostly, we’ve used ros2 topic delay /topic_name to measure the time between the message header and the current time. This approach works well for small-sized messages. However, when dealing with large point cloud messages, this method introduces an additional delay. This is primarily because accessing these large point cloud messages externally impacts the pipeline’s performance.

Our sensing/perception nodes are designed to run within composable node containers, leveraging intra-process communication. External subscriptions to these messages (like using ros2 topic delay or rviz2) impose extra delays and can even slow down the pipeline by subscribing externally. Therefore, these measurements will not be accurate.

To mitigate this issue, we’ve adopted a method where each node in the pipeline reports its pipeline latency time. This approach ensures the integrity of intra-process communication and provides a more accurate measure of delays in the pipeline.

Benchmarking The Pipeline

The nodes within the pipeline report the pipeline latency time, indicating the duration from the sensor driver’s pointcloud output to the node’s output. This data is crucial for assessing the pipeline’s health and efficiency.

When running Autoware, you can monitor the pipeline latency times for each node in the pipeline by subscribing to the following ROS 2 topics:

  • /sensing/lidar/LidarX/crop_box_filter_self/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/crop_box_filter_mirror/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/distortion_corrector/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/ring_outlier_filter/debug/pipeline_latency_ms
  • /sensing/lidar/concatenate_data_synchronizer/debug/sensing/lidar/LidarX/pointcloud/pipeline_latency_ms

These topics provide the pipeline latency times, giving insights into the delays at various stages of the pipeline from the sensor output of LidarX to each subsequent node.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_pointcloud_preprocessor

0.47.0 (2025-08-11)

  • refactor(pointcloud_preprocessor): extract downsample logic from pickup_based_voxel_downsample_filter (#11098)

    • feat(pointcloud_preprocessor): add voxel size struct and downsampling function to pickup based filter
    • refactor(pointcloud_preprocessor): use point_cloud2_iterator to handle pointcloud
    • refactor(pointcloud_preprocessor): pass VoxelSize by const reference to improve performance
    • feat(pointcloud_preprocessor): enhance voxel grid downsampling tests with additional scenarios
    • feat(pointcloud_preprocessor): refactor downsampling logic to extract unique voxel point indices and copy filtered points
    • fix(pointcloud_preprocessor): optimize voxel point index extraction and memory copying in downsampling
    • refactor(pointcloud_preprocessor): rename voxel_map to index_map for clarity in downsampling functions
    • refactor(pointcloud_preprocessor): remove unused includes
    • chore(pointcloud_preprocessor): apply clang-format and cpplint
    • chore(pointcloud_preprocessor): fix linter error
    • style(pre-commit): autofix
    • style(poincloud_preprocessor): adjust clang-format directives for consistency
    • fix(pointcloud_preprocessor): correct function name from copy_filtered_point to copy_filtered_points
    • fix(pointcloud_preprocessor): update parameter type from ConstSharedPtr to reference

    * refactor(pointcloud_preprocessor): consolidate voxel size parameters into a single struct ---------Co-authored-by: Takahisa.Ishikawa <<takahisa.ishikawa@tier4.jp>> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info (#10851)

    • feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info
    • style(pre-commit): autofix
    • feat(autoware_cuda_pointcloud_preprocessor): handle concatenated pointcloud meta info
    • feat(autoware_pointcloud_preprocessor): serialized config of matching strategy
    • feat(autoware_pointcloud_preprocessor): update msg
    • feat(autoware_pointcloud_preprocessor): update msg (2)
    • docs(autoware_pointcloud_preprocessor): add cloud info topic description
    • feat(autoware_pointcloud_preprocessor): add unit tests for cloud info
    • fix(autoware_pointcloud_preprocessor): pre-commit
    • fix(autoware_pointcloud_preprocessor): remove *_struct headers inclusion
    • fix(autoware_pointcloud_preprocessor): check if the matching strategy cannot be enumerated
    • test(autoware_pointcloud_preprocessor): full cloud repr
    • feat(autoware_pointcloud_preprocessor): auto success set & more unit tests
    • feat(autoware_pointcloud_preprocessor): publish info regardless cloud content
    • style(autoware_pointcloud_preprocessor): typo
    • feat(autoware_pointcloud_preprocessor): make update_concatenated_point_cloud_config static for easier integration

    * docs(autoware_pointcloud_preprocessor): typo Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>

    • fix(autoware_pointcloud_preprocessor): publish cloud info out of condition block
    • fix(autoware_pointcloud_preprocessor): container access with safe bound checking
    • style(autoware_pointcloud_preprocessor): unify naming convention (part 1 - content)
    • style(autoware_pointcloud_preprocessor): unify naming convention (part 2 - files name)
    • style(autoware_pointcloud_preprocessor): naming convention for main API
    • doc(autoware_pointcloud_preprocessor): add docstring

    * feat(autoware_pointcloud_preprocessor): add remap to launch files ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>

  • fix(pointcloud_preprocessor): handle empty pointclouds in pickup_based_downsample_filter (#11003)

File truncated at 100 lines see the full file

Launch files

  • launch/approximate_downsample_filter.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/approximate_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • approximate_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/approximate_downsample_filter_node.param.yaml]
  • launch/blockage_diag_node.launch.xml
      • input_topic_name [default: pointcloud_raw_ex]
      • output_topic_name [default: blockage_diag/pointcloud]
      • blockage_diagnostics_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/blockage_diag_node.param.yaml]
  • launch/concatenate_and_time_sync_node.launch.xml
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • output [default: /sensing/lidar/concatenated/pointcloud]
      • output_info [default: /sensing/lidar/concatenated/pointcloud_info]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_and_time_sync_node.param.yaml]
  • launch/concatenate_pointcloud.launch.xml
      • output [default: /sensing/lidar/concatenated/pointcloud]
      • output_info [default: /sensing/lidar/concatenated/pointcloud_info]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_pointclouds.param.yaml]
  • launch/crop_box_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/self_cropped/pointcloud_ex]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • crop_box_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/crop_box_filter_node.param.yaml]
  • launch/distortion_corrector_node.launch.xml
      • input/pointcloud [default: /sensing/lidar/top/mirror_cropped/pointcloud_ex]
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • input/imu [default: /sensing/imu/imu_data]
      • output/pointcloud [default: /sensing/lidar/top/rectified/pointcloud_ex]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/distortion_corrector_node.param.yaml]
  • launch/dual_return_outlier_filter_node.launch.xml
      • input_topic_name [default: /pointcloud]
      • output_topic_name [default: /pointcloud_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • dual_return_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/dual_return_outlier_filter_node.param.yaml]
  • launch/lanelet2_map_filter_node.launch.xml
      • input_vector_map [default: /map/vector_map]
      • input_pointcloud [default: detection_area/pointcloud]
      • output_pointcloud [default: vector_map_filtered/pointcloud]
      • lanelet2_map_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/lanelet2_map_filter_node.param.yaml]
  • launch/pickup_based_voxel_grid_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/pickup_based_voxel_grid_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • pickup_based_voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pickup_based_voxel_grid_downsample_filter_node.param.yaml]
  • launch/pointcloud_accumulator_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_accumulated]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • pointcloud_accumulator_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pointcloud_accumulator_node.param.yaml]
  • launch/preprocessor.launch.xml
      • input_points_raw_list [default: ['/points_raw']]
      • output_points_raw [default: /points_raw/cropbox/filtered]
      • tf_output_frame [default: base_link]
  • launch/radius_search_2d_outlier_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_filtered]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • radius_search_2d_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/radius_search_2d_outlier_filter_node.param.yaml]
  • launch/random_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/random_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • random_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/random_downsample_filter_node.param.yaml]
  • launch/ring_outlier_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_ring_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • ring_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/ring_outlier_filter_node.param.yaml]
  • launch/ring_passthrough_filter.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/ring_passthrough_filtered/pointcloud]
      • input_frame [default: ]
      • output_frame [default: base_link]
      • passthrough_filter_uint16_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/passthrough_filter_uint16_node.param.yaml]
  • launch/time_synchronizer_node.launch.xml
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/time_synchronizer_node.param.yaml]
  • launch/vector_map_inside_area_filter_node.launch.xml
      • input_vector_map [default: /map/vector_map]
      • input_pointcloud [default: compare_map_filtered/pointcloud]
      • output_pointcloud [default: vector_map_inside_area_filtered/pointcloud]
      • vector_map_inside_area_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/vector_map_inside_area_filter_node.param.yaml]
  • launch/voxel_grid_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/voxel_grid_downsample_filter/pointcloud]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_downsample_filter_node.param.yaml]
  • launch/voxel_grid_outlier_filter_node.launch.xml
      • input_topic_name [default: /pointcloud_raw]
      • output_topic_name [default: /pointcloud_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • voxel_grid_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_outlier_filter_node.param.yaml]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_pointcloud_preprocessor at Robotics Stack Exchange

No version for distro rolling showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_pointcloud_preprocessor package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

The ROS 2 autoware_pointcloud_preprocessor package

Additional Links

No additional links.

Maintainers

  • amc-nu
  • Yukihiro Saito
  • Kyoichi Sugahara
  • Dai Nguyen
  • Kenzo Lobos-Tsunekawa
  • Yihsiang Fang
  • Yoshi Ri
  • David Wong
  • Melike Tanrikulu
  • Max Schmeller
  • Kaan Colak

Authors

  • Open Perception
  • Julius Kammerl
  • William Woodall

autoware_pointcloud_preprocessor

Purpose

The autoware_pointcloud_preprocessor is a package that includes the following filters:

  • removing outlier points
  • cropping
  • concatenating pointclouds
  • correcting distortion
  • downsampling
  • densifying pointclouds

Inner-workings / Algorithms

Detail description of each filter’s algorithm is in the following links.

Filter Name Description Detail
concatenate_data subscribe multiple pointclouds and concatenate them into a pointcloud link
crop_box_filter remove points within a given box link
distortion_corrector compensate pointcloud distortion caused by ego vehicle’s movement during 1 scan link
downsample_filter downsampling input pointcloud link
outlier_filter remove points caused by hardware problems, rain drops and small insects as a noise link
passthrough_filter remove points on the outside of a range in given field (e.g. x, y, z, intensity) link
pointcloud_accumulator accumulate pointclouds for a given amount of time link
pointcloud_densifier enhance sparse point clouds by using information from previous frames link
vector_map_filter remove points on the outside of lane by using vector map link
vector_map_inside_area_filter remove points inside of vector map area that has given type by parameter link

Inputs / Outputs

Input

Name Type Description
~/input/points sensor_msgs::msg::PointCloud2 reference points
~/input/indices pcl_msgs::msg::Indices reference indices

Output

Name Type Description
~/output/points sensor_msgs::msg::PointCloud2 filtered points

Parameters

Node Parameters

Name Type Default Value Description
input_frame string ” “ input frame id
output_frame string ” “ output frame id
max_queue_size int 5 max queue size of input/output topics
use_indices bool false flag to use pointcloud indices
latched_indices bool false flag to latch pointcloud indices
approximate_sync bool false flag to use approximate sync option

Assumptions / Known limits

autoware::pointcloud_preprocessor::Filter is implemented based on pcl_perception [1] because of this issue.

Measuring the performance

In Autoware, point cloud data from each LiDAR sensor undergoes preprocessing in the sensing pipeline before being input into the perception pipeline. The preprocessing stages are illustrated in the diagram below:

pointcloud_preprocess_pipeline.drawio.png

Each stage in the pipeline incurs a processing delay. Mostly, we’ve used ros2 topic delay /topic_name to measure the time between the message header and the current time. This approach works well for small-sized messages. However, when dealing with large point cloud messages, this method introduces an additional delay. This is primarily because accessing these large point cloud messages externally impacts the pipeline’s performance.

Our sensing/perception nodes are designed to run within composable node containers, leveraging intra-process communication. External subscriptions to these messages (like using ros2 topic delay or rviz2) impose extra delays and can even slow down the pipeline by subscribing externally. Therefore, these measurements will not be accurate.

To mitigate this issue, we’ve adopted a method where each node in the pipeline reports its pipeline latency time. This approach ensures the integrity of intra-process communication and provides a more accurate measure of delays in the pipeline.

Benchmarking The Pipeline

The nodes within the pipeline report the pipeline latency time, indicating the duration from the sensor driver’s pointcloud output to the node’s output. This data is crucial for assessing the pipeline’s health and efficiency.

When running Autoware, you can monitor the pipeline latency times for each node in the pipeline by subscribing to the following ROS 2 topics:

  • /sensing/lidar/LidarX/crop_box_filter_self/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/crop_box_filter_mirror/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/distortion_corrector/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/ring_outlier_filter/debug/pipeline_latency_ms
  • /sensing/lidar/concatenate_data_synchronizer/debug/sensing/lidar/LidarX/pointcloud/pipeline_latency_ms

These topics provide the pipeline latency times, giving insights into the delays at various stages of the pipeline from the sensor output of LidarX to each subsequent node.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_pointcloud_preprocessor

0.47.0 (2025-08-11)

  • refactor(pointcloud_preprocessor): extract downsample logic from pickup_based_voxel_downsample_filter (#11098)

    • feat(pointcloud_preprocessor): add voxel size struct and downsampling function to pickup based filter
    • refactor(pointcloud_preprocessor): use point_cloud2_iterator to handle pointcloud
    • refactor(pointcloud_preprocessor): pass VoxelSize by const reference to improve performance
    • feat(pointcloud_preprocessor): enhance voxel grid downsampling tests with additional scenarios
    • feat(pointcloud_preprocessor): refactor downsampling logic to extract unique voxel point indices and copy filtered points
    • fix(pointcloud_preprocessor): optimize voxel point index extraction and memory copying in downsampling
    • refactor(pointcloud_preprocessor): rename voxel_map to index_map for clarity in downsampling functions
    • refactor(pointcloud_preprocessor): remove unused includes
    • chore(pointcloud_preprocessor): apply clang-format and cpplint
    • chore(pointcloud_preprocessor): fix linter error
    • style(pre-commit): autofix
    • style(poincloud_preprocessor): adjust clang-format directives for consistency
    • fix(pointcloud_preprocessor): correct function name from copy_filtered_point to copy_filtered_points
    • fix(pointcloud_preprocessor): update parameter type from ConstSharedPtr to reference

    * refactor(pointcloud_preprocessor): consolidate voxel size parameters into a single struct ---------Co-authored-by: Takahisa.Ishikawa <<takahisa.ishikawa@tier4.jp>> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info (#10851)

    • feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info
    • style(pre-commit): autofix
    • feat(autoware_cuda_pointcloud_preprocessor): handle concatenated pointcloud meta info
    • feat(autoware_pointcloud_preprocessor): serialized config of matching strategy
    • feat(autoware_pointcloud_preprocessor): update msg
    • feat(autoware_pointcloud_preprocessor): update msg (2)
    • docs(autoware_pointcloud_preprocessor): add cloud info topic description
    • feat(autoware_pointcloud_preprocessor): add unit tests for cloud info
    • fix(autoware_pointcloud_preprocessor): pre-commit
    • fix(autoware_pointcloud_preprocessor): remove *_struct headers inclusion
    • fix(autoware_pointcloud_preprocessor): check if the matching strategy cannot be enumerated
    • test(autoware_pointcloud_preprocessor): full cloud repr
    • feat(autoware_pointcloud_preprocessor): auto success set & more unit tests
    • feat(autoware_pointcloud_preprocessor): publish info regardless cloud content
    • style(autoware_pointcloud_preprocessor): typo
    • feat(autoware_pointcloud_preprocessor): make update_concatenated_point_cloud_config static for easier integration

    * docs(autoware_pointcloud_preprocessor): typo Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>

    • fix(autoware_pointcloud_preprocessor): publish cloud info out of condition block
    • fix(autoware_pointcloud_preprocessor): container access with safe bound checking
    • style(autoware_pointcloud_preprocessor): unify naming convention (part 1 - content)
    • style(autoware_pointcloud_preprocessor): unify naming convention (part 2 - files name)
    • style(autoware_pointcloud_preprocessor): naming convention for main API
    • doc(autoware_pointcloud_preprocessor): add docstring

    * feat(autoware_pointcloud_preprocessor): add remap to launch files ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>

  • fix(pointcloud_preprocessor): handle empty pointclouds in pickup_based_downsample_filter (#11003)

File truncated at 100 lines see the full file

Launch files

  • launch/approximate_downsample_filter.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/approximate_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • approximate_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/approximate_downsample_filter_node.param.yaml]
  • launch/blockage_diag_node.launch.xml
      • input_topic_name [default: pointcloud_raw_ex]
      • output_topic_name [default: blockage_diag/pointcloud]
      • blockage_diagnostics_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/blockage_diag_node.param.yaml]
  • launch/concatenate_and_time_sync_node.launch.xml
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • output [default: /sensing/lidar/concatenated/pointcloud]
      • output_info [default: /sensing/lidar/concatenated/pointcloud_info]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_and_time_sync_node.param.yaml]
  • launch/concatenate_pointcloud.launch.xml
      • output [default: /sensing/lidar/concatenated/pointcloud]
      • output_info [default: /sensing/lidar/concatenated/pointcloud_info]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_pointclouds.param.yaml]
  • launch/crop_box_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/self_cropped/pointcloud_ex]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • crop_box_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/crop_box_filter_node.param.yaml]
  • launch/distortion_corrector_node.launch.xml
      • input/pointcloud [default: /sensing/lidar/top/mirror_cropped/pointcloud_ex]
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • input/imu [default: /sensing/imu/imu_data]
      • output/pointcloud [default: /sensing/lidar/top/rectified/pointcloud_ex]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/distortion_corrector_node.param.yaml]
  • launch/dual_return_outlier_filter_node.launch.xml
      • input_topic_name [default: /pointcloud]
      • output_topic_name [default: /pointcloud_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • dual_return_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/dual_return_outlier_filter_node.param.yaml]
  • launch/lanelet2_map_filter_node.launch.xml
      • input_vector_map [default: /map/vector_map]
      • input_pointcloud [default: detection_area/pointcloud]
      • output_pointcloud [default: vector_map_filtered/pointcloud]
      • lanelet2_map_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/lanelet2_map_filter_node.param.yaml]
  • launch/pickup_based_voxel_grid_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/pickup_based_voxel_grid_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • pickup_based_voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pickup_based_voxel_grid_downsample_filter_node.param.yaml]
  • launch/pointcloud_accumulator_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_accumulated]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • pointcloud_accumulator_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pointcloud_accumulator_node.param.yaml]
  • launch/preprocessor.launch.xml
      • input_points_raw_list [default: ['/points_raw']]
      • output_points_raw [default: /points_raw/cropbox/filtered]
      • tf_output_frame [default: base_link]
  • launch/radius_search_2d_outlier_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_filtered]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • radius_search_2d_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/radius_search_2d_outlier_filter_node.param.yaml]
  • launch/random_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/random_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • random_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/random_downsample_filter_node.param.yaml]
  • launch/ring_outlier_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_ring_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • ring_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/ring_outlier_filter_node.param.yaml]
  • launch/ring_passthrough_filter.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/ring_passthrough_filtered/pointcloud]
      • input_frame [default: ]
      • output_frame [default: base_link]
      • passthrough_filter_uint16_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/passthrough_filter_uint16_node.param.yaml]
  • launch/time_synchronizer_node.launch.xml
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/time_synchronizer_node.param.yaml]
  • launch/vector_map_inside_area_filter_node.launch.xml
      • input_vector_map [default: /map/vector_map]
      • input_pointcloud [default: compare_map_filtered/pointcloud]
      • output_pointcloud [default: vector_map_inside_area_filtered/pointcloud]
      • vector_map_inside_area_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/vector_map_inside_area_filter_node.param.yaml]
  • launch/voxel_grid_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/voxel_grid_downsample_filter/pointcloud]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_downsample_filter_node.param.yaml]
  • launch/voxel_grid_outlier_filter_node.launch.xml
      • input_topic_name [default: /pointcloud_raw]
      • output_topic_name [default: /pointcloud_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • voxel_grid_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_outlier_filter_node.param.yaml]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_pointcloud_preprocessor at Robotics Stack Exchange

Package symbol

autoware_pointcloud_preprocessor package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

The ROS 2 autoware_pointcloud_preprocessor package

Additional Links

No additional links.

Maintainers

  • amc-nu
  • Yukihiro Saito
  • Kyoichi Sugahara
  • Dai Nguyen
  • Kenzo Lobos-Tsunekawa
  • Yihsiang Fang
  • Yoshi Ri
  • David Wong
  • Melike Tanrikulu
  • Max Schmeller
  • Kaan Colak

Authors

  • Open Perception
  • Julius Kammerl
  • William Woodall

autoware_pointcloud_preprocessor

Purpose

The autoware_pointcloud_preprocessor is a package that includes the following filters:

  • removing outlier points
  • cropping
  • concatenating pointclouds
  • correcting distortion
  • downsampling
  • densifying pointclouds

Inner-workings / Algorithms

Detail description of each filter’s algorithm is in the following links.

Filter Name Description Detail
concatenate_data subscribe multiple pointclouds and concatenate them into a pointcloud link
crop_box_filter remove points within a given box link
distortion_corrector compensate pointcloud distortion caused by ego vehicle’s movement during 1 scan link
downsample_filter downsampling input pointcloud link
outlier_filter remove points caused by hardware problems, rain drops and small insects as a noise link
passthrough_filter remove points on the outside of a range in given field (e.g. x, y, z, intensity) link
pointcloud_accumulator accumulate pointclouds for a given amount of time link
pointcloud_densifier enhance sparse point clouds by using information from previous frames link
vector_map_filter remove points on the outside of lane by using vector map link
vector_map_inside_area_filter remove points inside of vector map area that has given type by parameter link

Inputs / Outputs

Input

Name Type Description
~/input/points sensor_msgs::msg::PointCloud2 reference points
~/input/indices pcl_msgs::msg::Indices reference indices

Output

Name Type Description
~/output/points sensor_msgs::msg::PointCloud2 filtered points

Parameters

Node Parameters

Name Type Default Value Description
input_frame string ” “ input frame id
output_frame string ” “ output frame id
max_queue_size int 5 max queue size of input/output topics
use_indices bool false flag to use pointcloud indices
latched_indices bool false flag to latch pointcloud indices
approximate_sync bool false flag to use approximate sync option

Assumptions / Known limits

autoware::pointcloud_preprocessor::Filter is implemented based on pcl_perception [1] because of this issue.

Measuring the performance

In Autoware, point cloud data from each LiDAR sensor undergoes preprocessing in the sensing pipeline before being input into the perception pipeline. The preprocessing stages are illustrated in the diagram below:

pointcloud_preprocess_pipeline.drawio.png

Each stage in the pipeline incurs a processing delay. Mostly, we’ve used ros2 topic delay /topic_name to measure the time between the message header and the current time. This approach works well for small-sized messages. However, when dealing with large point cloud messages, this method introduces an additional delay. This is primarily because accessing these large point cloud messages externally impacts the pipeline’s performance.

Our sensing/perception nodes are designed to run within composable node containers, leveraging intra-process communication. External subscriptions to these messages (like using ros2 topic delay or rviz2) impose extra delays and can even slow down the pipeline by subscribing externally. Therefore, these measurements will not be accurate.

To mitigate this issue, we’ve adopted a method where each node in the pipeline reports its pipeline latency time. This approach ensures the integrity of intra-process communication and provides a more accurate measure of delays in the pipeline.

Benchmarking The Pipeline

The nodes within the pipeline report the pipeline latency time, indicating the duration from the sensor driver’s pointcloud output to the node’s output. This data is crucial for assessing the pipeline’s health and efficiency.

When running Autoware, you can monitor the pipeline latency times for each node in the pipeline by subscribing to the following ROS 2 topics:

  • /sensing/lidar/LidarX/crop_box_filter_self/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/crop_box_filter_mirror/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/distortion_corrector/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/ring_outlier_filter/debug/pipeline_latency_ms
  • /sensing/lidar/concatenate_data_synchronizer/debug/sensing/lidar/LidarX/pointcloud/pipeline_latency_ms

These topics provide the pipeline latency times, giving insights into the delays at various stages of the pipeline from the sensor output of LidarX to each subsequent node.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_pointcloud_preprocessor

0.47.0 (2025-08-11)

  • refactor(pointcloud_preprocessor): extract downsample logic from pickup_based_voxel_downsample_filter (#11098)

    • feat(pointcloud_preprocessor): add voxel size struct and downsampling function to pickup based filter
    • refactor(pointcloud_preprocessor): use point_cloud2_iterator to handle pointcloud
    • refactor(pointcloud_preprocessor): pass VoxelSize by const reference to improve performance
    • feat(pointcloud_preprocessor): enhance voxel grid downsampling tests with additional scenarios
    • feat(pointcloud_preprocessor): refactor downsampling logic to extract unique voxel point indices and copy filtered points
    • fix(pointcloud_preprocessor): optimize voxel point index extraction and memory copying in downsampling
    • refactor(pointcloud_preprocessor): rename voxel_map to index_map for clarity in downsampling functions
    • refactor(pointcloud_preprocessor): remove unused includes
    • chore(pointcloud_preprocessor): apply clang-format and cpplint
    • chore(pointcloud_preprocessor): fix linter error
    • style(pre-commit): autofix
    • style(poincloud_preprocessor): adjust clang-format directives for consistency
    • fix(pointcloud_preprocessor): correct function name from copy_filtered_point to copy_filtered_points
    • fix(pointcloud_preprocessor): update parameter type from ConstSharedPtr to reference

    * refactor(pointcloud_preprocessor): consolidate voxel size parameters into a single struct ---------Co-authored-by: Takahisa.Ishikawa <<takahisa.ishikawa@tier4.jp>> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info (#10851)

    • feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info
    • style(pre-commit): autofix
    • feat(autoware_cuda_pointcloud_preprocessor): handle concatenated pointcloud meta info
    • feat(autoware_pointcloud_preprocessor): serialized config of matching strategy
    • feat(autoware_pointcloud_preprocessor): update msg
    • feat(autoware_pointcloud_preprocessor): update msg (2)
    • docs(autoware_pointcloud_preprocessor): add cloud info topic description
    • feat(autoware_pointcloud_preprocessor): add unit tests for cloud info
    • fix(autoware_pointcloud_preprocessor): pre-commit
    • fix(autoware_pointcloud_preprocessor): remove *_struct headers inclusion
    • fix(autoware_pointcloud_preprocessor): check if the matching strategy cannot be enumerated
    • test(autoware_pointcloud_preprocessor): full cloud repr
    • feat(autoware_pointcloud_preprocessor): auto success set & more unit tests
    • feat(autoware_pointcloud_preprocessor): publish info regardless cloud content
    • style(autoware_pointcloud_preprocessor): typo
    • feat(autoware_pointcloud_preprocessor): make update_concatenated_point_cloud_config static for easier integration

    * docs(autoware_pointcloud_preprocessor): typo Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>

    • fix(autoware_pointcloud_preprocessor): publish cloud info out of condition block
    • fix(autoware_pointcloud_preprocessor): container access with safe bound checking
    • style(autoware_pointcloud_preprocessor): unify naming convention (part 1 - content)
    • style(autoware_pointcloud_preprocessor): unify naming convention (part 2 - files name)
    • style(autoware_pointcloud_preprocessor): naming convention for main API
    • doc(autoware_pointcloud_preprocessor): add docstring

    * feat(autoware_pointcloud_preprocessor): add remap to launch files ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>

  • fix(pointcloud_preprocessor): handle empty pointclouds in pickup_based_downsample_filter (#11003)

File truncated at 100 lines see the full file

Launch files

  • launch/approximate_downsample_filter.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/approximate_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • approximate_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/approximate_downsample_filter_node.param.yaml]
  • launch/blockage_diag_node.launch.xml
      • input_topic_name [default: pointcloud_raw_ex]
      • output_topic_name [default: blockage_diag/pointcloud]
      • blockage_diagnostics_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/blockage_diag_node.param.yaml]
  • launch/concatenate_and_time_sync_node.launch.xml
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • output [default: /sensing/lidar/concatenated/pointcloud]
      • output_info [default: /sensing/lidar/concatenated/pointcloud_info]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_and_time_sync_node.param.yaml]
  • launch/concatenate_pointcloud.launch.xml
      • output [default: /sensing/lidar/concatenated/pointcloud]
      • output_info [default: /sensing/lidar/concatenated/pointcloud_info]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_pointclouds.param.yaml]
  • launch/crop_box_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/self_cropped/pointcloud_ex]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • crop_box_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/crop_box_filter_node.param.yaml]
  • launch/distortion_corrector_node.launch.xml
      • input/pointcloud [default: /sensing/lidar/top/mirror_cropped/pointcloud_ex]
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • input/imu [default: /sensing/imu/imu_data]
      • output/pointcloud [default: /sensing/lidar/top/rectified/pointcloud_ex]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/distortion_corrector_node.param.yaml]
  • launch/dual_return_outlier_filter_node.launch.xml
      • input_topic_name [default: /pointcloud]
      • output_topic_name [default: /pointcloud_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • dual_return_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/dual_return_outlier_filter_node.param.yaml]
  • launch/lanelet2_map_filter_node.launch.xml
      • input_vector_map [default: /map/vector_map]
      • input_pointcloud [default: detection_area/pointcloud]
      • output_pointcloud [default: vector_map_filtered/pointcloud]
      • lanelet2_map_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/lanelet2_map_filter_node.param.yaml]
  • launch/pickup_based_voxel_grid_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/pickup_based_voxel_grid_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • pickup_based_voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pickup_based_voxel_grid_downsample_filter_node.param.yaml]
  • launch/pointcloud_accumulator_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_accumulated]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • pointcloud_accumulator_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pointcloud_accumulator_node.param.yaml]
  • launch/preprocessor.launch.xml
      • input_points_raw_list [default: ['/points_raw']]
      • output_points_raw [default: /points_raw/cropbox/filtered]
      • tf_output_frame [default: base_link]
  • launch/radius_search_2d_outlier_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_filtered]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • radius_search_2d_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/radius_search_2d_outlier_filter_node.param.yaml]
  • launch/random_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/random_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • random_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/random_downsample_filter_node.param.yaml]
  • launch/ring_outlier_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_ring_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • ring_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/ring_outlier_filter_node.param.yaml]
  • launch/ring_passthrough_filter.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/ring_passthrough_filtered/pointcloud]
      • input_frame [default: ]
      • output_frame [default: base_link]
      • passthrough_filter_uint16_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/passthrough_filter_uint16_node.param.yaml]
  • launch/time_synchronizer_node.launch.xml
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/time_synchronizer_node.param.yaml]
  • launch/vector_map_inside_area_filter_node.launch.xml
      • input_vector_map [default: /map/vector_map]
      • input_pointcloud [default: compare_map_filtered/pointcloud]
      • output_pointcloud [default: vector_map_inside_area_filtered/pointcloud]
      • vector_map_inside_area_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/vector_map_inside_area_filter_node.param.yaml]
  • launch/voxel_grid_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/voxel_grid_downsample_filter/pointcloud]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_downsample_filter_node.param.yaml]
  • launch/voxel_grid_outlier_filter_node.launch.xml
      • input_topic_name [default: /pointcloud_raw]
      • output_topic_name [default: /pointcloud_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • voxel_grid_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_outlier_filter_node.param.yaml]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_pointcloud_preprocessor at Robotics Stack Exchange

No version for distro galactic showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_pointcloud_preprocessor package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

The ROS 2 autoware_pointcloud_preprocessor package

Additional Links

No additional links.

Maintainers

  • amc-nu
  • Yukihiro Saito
  • Kyoichi Sugahara
  • Dai Nguyen
  • Kenzo Lobos-Tsunekawa
  • Yihsiang Fang
  • Yoshi Ri
  • David Wong
  • Melike Tanrikulu
  • Max Schmeller
  • Kaan Colak

Authors

  • Open Perception
  • Julius Kammerl
  • William Woodall

autoware_pointcloud_preprocessor

Purpose

The autoware_pointcloud_preprocessor is a package that includes the following filters:

  • removing outlier points
  • cropping
  • concatenating pointclouds
  • correcting distortion
  • downsampling
  • densifying pointclouds

Inner-workings / Algorithms

Detail description of each filter’s algorithm is in the following links.

Filter Name Description Detail
concatenate_data subscribe multiple pointclouds and concatenate them into a pointcloud link
crop_box_filter remove points within a given box link
distortion_corrector compensate pointcloud distortion caused by ego vehicle’s movement during 1 scan link
downsample_filter downsampling input pointcloud link
outlier_filter remove points caused by hardware problems, rain drops and small insects as a noise link
passthrough_filter remove points on the outside of a range in given field (e.g. x, y, z, intensity) link
pointcloud_accumulator accumulate pointclouds for a given amount of time link
pointcloud_densifier enhance sparse point clouds by using information from previous frames link
vector_map_filter remove points on the outside of lane by using vector map link
vector_map_inside_area_filter remove points inside of vector map area that has given type by parameter link

Inputs / Outputs

Input

Name Type Description
~/input/points sensor_msgs::msg::PointCloud2 reference points
~/input/indices pcl_msgs::msg::Indices reference indices

Output

Name Type Description
~/output/points sensor_msgs::msg::PointCloud2 filtered points

Parameters

Node Parameters

Name Type Default Value Description
input_frame string ” “ input frame id
output_frame string ” “ output frame id
max_queue_size int 5 max queue size of input/output topics
use_indices bool false flag to use pointcloud indices
latched_indices bool false flag to latch pointcloud indices
approximate_sync bool false flag to use approximate sync option

Assumptions / Known limits

autoware::pointcloud_preprocessor::Filter is implemented based on pcl_perception [1] because of this issue.

Measuring the performance

In Autoware, point cloud data from each LiDAR sensor undergoes preprocessing in the sensing pipeline before being input into the perception pipeline. The preprocessing stages are illustrated in the diagram below:

pointcloud_preprocess_pipeline.drawio.png

Each stage in the pipeline incurs a processing delay. Mostly, we’ve used ros2 topic delay /topic_name to measure the time between the message header and the current time. This approach works well for small-sized messages. However, when dealing with large point cloud messages, this method introduces an additional delay. This is primarily because accessing these large point cloud messages externally impacts the pipeline’s performance.

Our sensing/perception nodes are designed to run within composable node containers, leveraging intra-process communication. External subscriptions to these messages (like using ros2 topic delay or rviz2) impose extra delays and can even slow down the pipeline by subscribing externally. Therefore, these measurements will not be accurate.

To mitigate this issue, we’ve adopted a method where each node in the pipeline reports its pipeline latency time. This approach ensures the integrity of intra-process communication and provides a more accurate measure of delays in the pipeline.

Benchmarking The Pipeline

The nodes within the pipeline report the pipeline latency time, indicating the duration from the sensor driver’s pointcloud output to the node’s output. This data is crucial for assessing the pipeline’s health and efficiency.

When running Autoware, you can monitor the pipeline latency times for each node in the pipeline by subscribing to the following ROS 2 topics:

  • /sensing/lidar/LidarX/crop_box_filter_self/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/crop_box_filter_mirror/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/distortion_corrector/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/ring_outlier_filter/debug/pipeline_latency_ms
  • /sensing/lidar/concatenate_data_synchronizer/debug/sensing/lidar/LidarX/pointcloud/pipeline_latency_ms

These topics provide the pipeline latency times, giving insights into the delays at various stages of the pipeline from the sensor output of LidarX to each subsequent node.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_pointcloud_preprocessor

0.47.0 (2025-08-11)

  • refactor(pointcloud_preprocessor): extract downsample logic from pickup_based_voxel_downsample_filter (#11098)

    • feat(pointcloud_preprocessor): add voxel size struct and downsampling function to pickup based filter
    • refactor(pointcloud_preprocessor): use point_cloud2_iterator to handle pointcloud
    • refactor(pointcloud_preprocessor): pass VoxelSize by const reference to improve performance
    • feat(pointcloud_preprocessor): enhance voxel grid downsampling tests with additional scenarios
    • feat(pointcloud_preprocessor): refactor downsampling logic to extract unique voxel point indices and copy filtered points
    • fix(pointcloud_preprocessor): optimize voxel point index extraction and memory copying in downsampling
    • refactor(pointcloud_preprocessor): rename voxel_map to index_map for clarity in downsampling functions
    • refactor(pointcloud_preprocessor): remove unused includes
    • chore(pointcloud_preprocessor): apply clang-format and cpplint
    • chore(pointcloud_preprocessor): fix linter error
    • style(pre-commit): autofix
    • style(poincloud_preprocessor): adjust clang-format directives for consistency
    • fix(pointcloud_preprocessor): correct function name from copy_filtered_point to copy_filtered_points
    • fix(pointcloud_preprocessor): update parameter type from ConstSharedPtr to reference

    * refactor(pointcloud_preprocessor): consolidate voxel size parameters into a single struct ---------Co-authored-by: Takahisa.Ishikawa <<takahisa.ishikawa@tier4.jp>> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info (#10851)

    • feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info
    • style(pre-commit): autofix
    • feat(autoware_cuda_pointcloud_preprocessor): handle concatenated pointcloud meta info
    • feat(autoware_pointcloud_preprocessor): serialized config of matching strategy
    • feat(autoware_pointcloud_preprocessor): update msg
    • feat(autoware_pointcloud_preprocessor): update msg (2)
    • docs(autoware_pointcloud_preprocessor): add cloud info topic description
    • feat(autoware_pointcloud_preprocessor): add unit tests for cloud info
    • fix(autoware_pointcloud_preprocessor): pre-commit
    • fix(autoware_pointcloud_preprocessor): remove *_struct headers inclusion
    • fix(autoware_pointcloud_preprocessor): check if the matching strategy cannot be enumerated
    • test(autoware_pointcloud_preprocessor): full cloud repr
    • feat(autoware_pointcloud_preprocessor): auto success set & more unit tests
    • feat(autoware_pointcloud_preprocessor): publish info regardless cloud content
    • style(autoware_pointcloud_preprocessor): typo
    • feat(autoware_pointcloud_preprocessor): make update_concatenated_point_cloud_config static for easier integration

    * docs(autoware_pointcloud_preprocessor): typo Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>

    • fix(autoware_pointcloud_preprocessor): publish cloud info out of condition block
    • fix(autoware_pointcloud_preprocessor): container access with safe bound checking
    • style(autoware_pointcloud_preprocessor): unify naming convention (part 1 - content)
    • style(autoware_pointcloud_preprocessor): unify naming convention (part 2 - files name)
    • style(autoware_pointcloud_preprocessor): naming convention for main API
    • doc(autoware_pointcloud_preprocessor): add docstring

    * feat(autoware_pointcloud_preprocessor): add remap to launch files ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>

  • fix(pointcloud_preprocessor): handle empty pointclouds in pickup_based_downsample_filter (#11003)

File truncated at 100 lines see the full file

Launch files

  • launch/approximate_downsample_filter.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/approximate_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • approximate_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/approximate_downsample_filter_node.param.yaml]
  • launch/blockage_diag_node.launch.xml
      • input_topic_name [default: pointcloud_raw_ex]
      • output_topic_name [default: blockage_diag/pointcloud]
      • blockage_diagnostics_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/blockage_diag_node.param.yaml]
  • launch/concatenate_and_time_sync_node.launch.xml
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • output [default: /sensing/lidar/concatenated/pointcloud]
      • output_info [default: /sensing/lidar/concatenated/pointcloud_info]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_and_time_sync_node.param.yaml]
  • launch/concatenate_pointcloud.launch.xml
      • output [default: /sensing/lidar/concatenated/pointcloud]
      • output_info [default: /sensing/lidar/concatenated/pointcloud_info]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_pointclouds.param.yaml]
  • launch/crop_box_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/self_cropped/pointcloud_ex]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • crop_box_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/crop_box_filter_node.param.yaml]
  • launch/distortion_corrector_node.launch.xml
      • input/pointcloud [default: /sensing/lidar/top/mirror_cropped/pointcloud_ex]
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • input/imu [default: /sensing/imu/imu_data]
      • output/pointcloud [default: /sensing/lidar/top/rectified/pointcloud_ex]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/distortion_corrector_node.param.yaml]
  • launch/dual_return_outlier_filter_node.launch.xml
      • input_topic_name [default: /pointcloud]
      • output_topic_name [default: /pointcloud_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • dual_return_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/dual_return_outlier_filter_node.param.yaml]
  • launch/lanelet2_map_filter_node.launch.xml
      • input_vector_map [default: /map/vector_map]
      • input_pointcloud [default: detection_area/pointcloud]
      • output_pointcloud [default: vector_map_filtered/pointcloud]
      • lanelet2_map_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/lanelet2_map_filter_node.param.yaml]
  • launch/pickup_based_voxel_grid_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/pickup_based_voxel_grid_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • pickup_based_voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pickup_based_voxel_grid_downsample_filter_node.param.yaml]
  • launch/pointcloud_accumulator_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_accumulated]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • pointcloud_accumulator_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pointcloud_accumulator_node.param.yaml]
  • launch/preprocessor.launch.xml
      • input_points_raw_list [default: ['/points_raw']]
      • output_points_raw [default: /points_raw/cropbox/filtered]
      • tf_output_frame [default: base_link]
  • launch/radius_search_2d_outlier_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_filtered]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • radius_search_2d_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/radius_search_2d_outlier_filter_node.param.yaml]
  • launch/random_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/random_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • random_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/random_downsample_filter_node.param.yaml]
  • launch/ring_outlier_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_ring_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • ring_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/ring_outlier_filter_node.param.yaml]
  • launch/ring_passthrough_filter.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/ring_passthrough_filtered/pointcloud]
      • input_frame [default: ]
      • output_frame [default: base_link]
      • passthrough_filter_uint16_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/passthrough_filter_uint16_node.param.yaml]
  • launch/time_synchronizer_node.launch.xml
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/time_synchronizer_node.param.yaml]
  • launch/vector_map_inside_area_filter_node.launch.xml
      • input_vector_map [default: /map/vector_map]
      • input_pointcloud [default: compare_map_filtered/pointcloud]
      • output_pointcloud [default: vector_map_inside_area_filtered/pointcloud]
      • vector_map_inside_area_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/vector_map_inside_area_filter_node.param.yaml]
  • launch/voxel_grid_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/voxel_grid_downsample_filter/pointcloud]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_downsample_filter_node.param.yaml]
  • launch/voxel_grid_outlier_filter_node.launch.xml
      • input_topic_name [default: /pointcloud_raw]
      • output_topic_name [default: /pointcloud_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • voxel_grid_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_outlier_filter_node.param.yaml]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_pointcloud_preprocessor at Robotics Stack Exchange

No version for distro iron showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_pointcloud_preprocessor package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

The ROS 2 autoware_pointcloud_preprocessor package

Additional Links

No additional links.

Maintainers

  • amc-nu
  • Yukihiro Saito
  • Kyoichi Sugahara
  • Dai Nguyen
  • Kenzo Lobos-Tsunekawa
  • Yihsiang Fang
  • Yoshi Ri
  • David Wong
  • Melike Tanrikulu
  • Max Schmeller
  • Kaan Colak

Authors

  • Open Perception
  • Julius Kammerl
  • William Woodall

autoware_pointcloud_preprocessor

Purpose

The autoware_pointcloud_preprocessor is a package that includes the following filters:

  • removing outlier points
  • cropping
  • concatenating pointclouds
  • correcting distortion
  • downsampling
  • densifying pointclouds

Inner-workings / Algorithms

Detail description of each filter’s algorithm is in the following links.

Filter Name Description Detail
concatenate_data subscribe multiple pointclouds and concatenate them into a pointcloud link
crop_box_filter remove points within a given box link
distortion_corrector compensate pointcloud distortion caused by ego vehicle’s movement during 1 scan link
downsample_filter downsampling input pointcloud link
outlier_filter remove points caused by hardware problems, rain drops and small insects as a noise link
passthrough_filter remove points on the outside of a range in given field (e.g. x, y, z, intensity) link
pointcloud_accumulator accumulate pointclouds for a given amount of time link
pointcloud_densifier enhance sparse point clouds by using information from previous frames link
vector_map_filter remove points on the outside of lane by using vector map link
vector_map_inside_area_filter remove points inside of vector map area that has given type by parameter link

Inputs / Outputs

Input

Name Type Description
~/input/points sensor_msgs::msg::PointCloud2 reference points
~/input/indices pcl_msgs::msg::Indices reference indices

Output

Name Type Description
~/output/points sensor_msgs::msg::PointCloud2 filtered points

Parameters

Node Parameters

Name Type Default Value Description
input_frame string ” “ input frame id
output_frame string ” “ output frame id
max_queue_size int 5 max queue size of input/output topics
use_indices bool false flag to use pointcloud indices
latched_indices bool false flag to latch pointcloud indices
approximate_sync bool false flag to use approximate sync option

Assumptions / Known limits

autoware::pointcloud_preprocessor::Filter is implemented based on pcl_perception [1] because of this issue.

Measuring the performance

In Autoware, point cloud data from each LiDAR sensor undergoes preprocessing in the sensing pipeline before being input into the perception pipeline. The preprocessing stages are illustrated in the diagram below:

pointcloud_preprocess_pipeline.drawio.png

Each stage in the pipeline incurs a processing delay. Mostly, we’ve used ros2 topic delay /topic_name to measure the time between the message header and the current time. This approach works well for small-sized messages. However, when dealing with large point cloud messages, this method introduces an additional delay. This is primarily because accessing these large point cloud messages externally impacts the pipeline’s performance.

Our sensing/perception nodes are designed to run within composable node containers, leveraging intra-process communication. External subscriptions to these messages (like using ros2 topic delay or rviz2) impose extra delays and can even slow down the pipeline by subscribing externally. Therefore, these measurements will not be accurate.

To mitigate this issue, we’ve adopted a method where each node in the pipeline reports its pipeline latency time. This approach ensures the integrity of intra-process communication and provides a more accurate measure of delays in the pipeline.

Benchmarking The Pipeline

The nodes within the pipeline report the pipeline latency time, indicating the duration from the sensor driver’s pointcloud output to the node’s output. This data is crucial for assessing the pipeline’s health and efficiency.

When running Autoware, you can monitor the pipeline latency times for each node in the pipeline by subscribing to the following ROS 2 topics:

  • /sensing/lidar/LidarX/crop_box_filter_self/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/crop_box_filter_mirror/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/distortion_corrector/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/ring_outlier_filter/debug/pipeline_latency_ms
  • /sensing/lidar/concatenate_data_synchronizer/debug/sensing/lidar/LidarX/pointcloud/pipeline_latency_ms

These topics provide the pipeline latency times, giving insights into the delays at various stages of the pipeline from the sensor output of LidarX to each subsequent node.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_pointcloud_preprocessor

0.47.0 (2025-08-11)

  • refactor(pointcloud_preprocessor): extract downsample logic from pickup_based_voxel_downsample_filter (#11098)

    • feat(pointcloud_preprocessor): add voxel size struct and downsampling function to pickup based filter
    • refactor(pointcloud_preprocessor): use point_cloud2_iterator to handle pointcloud
    • refactor(pointcloud_preprocessor): pass VoxelSize by const reference to improve performance
    • feat(pointcloud_preprocessor): enhance voxel grid downsampling tests with additional scenarios
    • feat(pointcloud_preprocessor): refactor downsampling logic to extract unique voxel point indices and copy filtered points
    • fix(pointcloud_preprocessor): optimize voxel point index extraction and memory copying in downsampling
    • refactor(pointcloud_preprocessor): rename voxel_map to index_map for clarity in downsampling functions
    • refactor(pointcloud_preprocessor): remove unused includes
    • chore(pointcloud_preprocessor): apply clang-format and cpplint
    • chore(pointcloud_preprocessor): fix linter error
    • style(pre-commit): autofix
    • style(poincloud_preprocessor): adjust clang-format directives for consistency
    • fix(pointcloud_preprocessor): correct function name from copy_filtered_point to copy_filtered_points
    • fix(pointcloud_preprocessor): update parameter type from ConstSharedPtr to reference

    * refactor(pointcloud_preprocessor): consolidate voxel size parameters into a single struct ---------Co-authored-by: Takahisa.Ishikawa <<takahisa.ishikawa@tier4.jp>> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info (#10851)

    • feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info
    • style(pre-commit): autofix
    • feat(autoware_cuda_pointcloud_preprocessor): handle concatenated pointcloud meta info
    • feat(autoware_pointcloud_preprocessor): serialized config of matching strategy
    • feat(autoware_pointcloud_preprocessor): update msg
    • feat(autoware_pointcloud_preprocessor): update msg (2)
    • docs(autoware_pointcloud_preprocessor): add cloud info topic description
    • feat(autoware_pointcloud_preprocessor): add unit tests for cloud info
    • fix(autoware_pointcloud_preprocessor): pre-commit
    • fix(autoware_pointcloud_preprocessor): remove *_struct headers inclusion
    • fix(autoware_pointcloud_preprocessor): check if the matching strategy cannot be enumerated
    • test(autoware_pointcloud_preprocessor): full cloud repr
    • feat(autoware_pointcloud_preprocessor): auto success set & more unit tests
    • feat(autoware_pointcloud_preprocessor): publish info regardless cloud content
    • style(autoware_pointcloud_preprocessor): typo
    • feat(autoware_pointcloud_preprocessor): make update_concatenated_point_cloud_config static for easier integration

    * docs(autoware_pointcloud_preprocessor): typo Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>

    • fix(autoware_pointcloud_preprocessor): publish cloud info out of condition block
    • fix(autoware_pointcloud_preprocessor): container access with safe bound checking
    • style(autoware_pointcloud_preprocessor): unify naming convention (part 1 - content)
    • style(autoware_pointcloud_preprocessor): unify naming convention (part 2 - files name)
    • style(autoware_pointcloud_preprocessor): naming convention for main API
    • doc(autoware_pointcloud_preprocessor): add docstring

    * feat(autoware_pointcloud_preprocessor): add remap to launch files ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>

  • fix(pointcloud_preprocessor): handle empty pointclouds in pickup_based_downsample_filter (#11003)

File truncated at 100 lines see the full file

Launch files

  • launch/approximate_downsample_filter.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/approximate_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • approximate_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/approximate_downsample_filter_node.param.yaml]
  • launch/blockage_diag_node.launch.xml
      • input_topic_name [default: pointcloud_raw_ex]
      • output_topic_name [default: blockage_diag/pointcloud]
      • blockage_diagnostics_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/blockage_diag_node.param.yaml]
  • launch/concatenate_and_time_sync_node.launch.xml
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • output [default: /sensing/lidar/concatenated/pointcloud]
      • output_info [default: /sensing/lidar/concatenated/pointcloud_info]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_and_time_sync_node.param.yaml]
  • launch/concatenate_pointcloud.launch.xml
      • output [default: /sensing/lidar/concatenated/pointcloud]
      • output_info [default: /sensing/lidar/concatenated/pointcloud_info]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_pointclouds.param.yaml]
  • launch/crop_box_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/self_cropped/pointcloud_ex]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • crop_box_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/crop_box_filter_node.param.yaml]
  • launch/distortion_corrector_node.launch.xml
      • input/pointcloud [default: /sensing/lidar/top/mirror_cropped/pointcloud_ex]
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • input/imu [default: /sensing/imu/imu_data]
      • output/pointcloud [default: /sensing/lidar/top/rectified/pointcloud_ex]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/distortion_corrector_node.param.yaml]
  • launch/dual_return_outlier_filter_node.launch.xml
      • input_topic_name [default: /pointcloud]
      • output_topic_name [default: /pointcloud_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • dual_return_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/dual_return_outlier_filter_node.param.yaml]
  • launch/lanelet2_map_filter_node.launch.xml
      • input_vector_map [default: /map/vector_map]
      • input_pointcloud [default: detection_area/pointcloud]
      • output_pointcloud [default: vector_map_filtered/pointcloud]
      • lanelet2_map_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/lanelet2_map_filter_node.param.yaml]
  • launch/pickup_based_voxel_grid_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/pickup_based_voxel_grid_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • pickup_based_voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pickup_based_voxel_grid_downsample_filter_node.param.yaml]
  • launch/pointcloud_accumulator_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_accumulated]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • pointcloud_accumulator_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pointcloud_accumulator_node.param.yaml]
  • launch/preprocessor.launch.xml
      • input_points_raw_list [default: ['/points_raw']]
      • output_points_raw [default: /points_raw/cropbox/filtered]
      • tf_output_frame [default: base_link]
  • launch/radius_search_2d_outlier_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_filtered]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • radius_search_2d_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/radius_search_2d_outlier_filter_node.param.yaml]
  • launch/random_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/random_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • random_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/random_downsample_filter_node.param.yaml]
  • launch/ring_outlier_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_ring_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • ring_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/ring_outlier_filter_node.param.yaml]
  • launch/ring_passthrough_filter.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/ring_passthrough_filtered/pointcloud]
      • input_frame [default: ]
      • output_frame [default: base_link]
      • passthrough_filter_uint16_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/passthrough_filter_uint16_node.param.yaml]
  • launch/time_synchronizer_node.launch.xml
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/time_synchronizer_node.param.yaml]
  • launch/vector_map_inside_area_filter_node.launch.xml
      • input_vector_map [default: /map/vector_map]
      • input_pointcloud [default: compare_map_filtered/pointcloud]
      • output_pointcloud [default: vector_map_inside_area_filtered/pointcloud]
      • vector_map_inside_area_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/vector_map_inside_area_filter_node.param.yaml]
  • launch/voxel_grid_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/voxel_grid_downsample_filter/pointcloud]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_downsample_filter_node.param.yaml]
  • launch/voxel_grid_outlier_filter_node.launch.xml
      • input_topic_name [default: /pointcloud_raw]
      • output_topic_name [default: /pointcloud_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • voxel_grid_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_outlier_filter_node.param.yaml]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_pointcloud_preprocessor at Robotics Stack Exchange

No version for distro melodic showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_pointcloud_preprocessor package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

The ROS 2 autoware_pointcloud_preprocessor package

Additional Links

No additional links.

Maintainers

  • amc-nu
  • Yukihiro Saito
  • Kyoichi Sugahara
  • Dai Nguyen
  • Kenzo Lobos-Tsunekawa
  • Yihsiang Fang
  • Yoshi Ri
  • David Wong
  • Melike Tanrikulu
  • Max Schmeller
  • Kaan Colak

Authors

  • Open Perception
  • Julius Kammerl
  • William Woodall

autoware_pointcloud_preprocessor

Purpose

The autoware_pointcloud_preprocessor is a package that includes the following filters:

  • removing outlier points
  • cropping
  • concatenating pointclouds
  • correcting distortion
  • downsampling
  • densifying pointclouds

Inner-workings / Algorithms

Detail description of each filter’s algorithm is in the following links.

Filter Name Description Detail
concatenate_data subscribe multiple pointclouds and concatenate them into a pointcloud link
crop_box_filter remove points within a given box link
distortion_corrector compensate pointcloud distortion caused by ego vehicle’s movement during 1 scan link
downsample_filter downsampling input pointcloud link
outlier_filter remove points caused by hardware problems, rain drops and small insects as a noise link
passthrough_filter remove points on the outside of a range in given field (e.g. x, y, z, intensity) link
pointcloud_accumulator accumulate pointclouds for a given amount of time link
pointcloud_densifier enhance sparse point clouds by using information from previous frames link
vector_map_filter remove points on the outside of lane by using vector map link
vector_map_inside_area_filter remove points inside of vector map area that has given type by parameter link

Inputs / Outputs

Input

Name Type Description
~/input/points sensor_msgs::msg::PointCloud2 reference points
~/input/indices pcl_msgs::msg::Indices reference indices

Output

Name Type Description
~/output/points sensor_msgs::msg::PointCloud2 filtered points

Parameters

Node Parameters

Name Type Default Value Description
input_frame string ” “ input frame id
output_frame string ” “ output frame id
max_queue_size int 5 max queue size of input/output topics
use_indices bool false flag to use pointcloud indices
latched_indices bool false flag to latch pointcloud indices
approximate_sync bool false flag to use approximate sync option

Assumptions / Known limits

autoware::pointcloud_preprocessor::Filter is implemented based on pcl_perception [1] because of this issue.

Measuring the performance

In Autoware, point cloud data from each LiDAR sensor undergoes preprocessing in the sensing pipeline before being input into the perception pipeline. The preprocessing stages are illustrated in the diagram below:

pointcloud_preprocess_pipeline.drawio.png

Each stage in the pipeline incurs a processing delay. Mostly, we’ve used ros2 topic delay /topic_name to measure the time between the message header and the current time. This approach works well for small-sized messages. However, when dealing with large point cloud messages, this method introduces an additional delay. This is primarily because accessing these large point cloud messages externally impacts the pipeline’s performance.

Our sensing/perception nodes are designed to run within composable node containers, leveraging intra-process communication. External subscriptions to these messages (like using ros2 topic delay or rviz2) impose extra delays and can even slow down the pipeline by subscribing externally. Therefore, these measurements will not be accurate.

To mitigate this issue, we’ve adopted a method where each node in the pipeline reports its pipeline latency time. This approach ensures the integrity of intra-process communication and provides a more accurate measure of delays in the pipeline.

Benchmarking The Pipeline

The nodes within the pipeline report the pipeline latency time, indicating the duration from the sensor driver’s pointcloud output to the node’s output. This data is crucial for assessing the pipeline’s health and efficiency.

When running Autoware, you can monitor the pipeline latency times for each node in the pipeline by subscribing to the following ROS 2 topics:

  • /sensing/lidar/LidarX/crop_box_filter_self/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/crop_box_filter_mirror/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/distortion_corrector/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/ring_outlier_filter/debug/pipeline_latency_ms
  • /sensing/lidar/concatenate_data_synchronizer/debug/sensing/lidar/LidarX/pointcloud/pipeline_latency_ms

These topics provide the pipeline latency times, giving insights into the delays at various stages of the pipeline from the sensor output of LidarX to each subsequent node.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_pointcloud_preprocessor

0.47.0 (2025-08-11)

  • refactor(pointcloud_preprocessor): extract downsample logic from pickup_based_voxel_downsample_filter (#11098)

    • feat(pointcloud_preprocessor): add voxel size struct and downsampling function to pickup based filter
    • refactor(pointcloud_preprocessor): use point_cloud2_iterator to handle pointcloud
    • refactor(pointcloud_preprocessor): pass VoxelSize by const reference to improve performance
    • feat(pointcloud_preprocessor): enhance voxel grid downsampling tests with additional scenarios
    • feat(pointcloud_preprocessor): refactor downsampling logic to extract unique voxel point indices and copy filtered points
    • fix(pointcloud_preprocessor): optimize voxel point index extraction and memory copying in downsampling
    • refactor(pointcloud_preprocessor): rename voxel_map to index_map for clarity in downsampling functions
    • refactor(pointcloud_preprocessor): remove unused includes
    • chore(pointcloud_preprocessor): apply clang-format and cpplint
    • chore(pointcloud_preprocessor): fix linter error
    • style(pre-commit): autofix
    • style(poincloud_preprocessor): adjust clang-format directives for consistency
    • fix(pointcloud_preprocessor): correct function name from copy_filtered_point to copy_filtered_points
    • fix(pointcloud_preprocessor): update parameter type from ConstSharedPtr to reference

    * refactor(pointcloud_preprocessor): consolidate voxel size parameters into a single struct ---------Co-authored-by: Takahisa.Ishikawa <<takahisa.ishikawa@tier4.jp>> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info (#10851)

    • feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info
    • style(pre-commit): autofix
    • feat(autoware_cuda_pointcloud_preprocessor): handle concatenated pointcloud meta info
    • feat(autoware_pointcloud_preprocessor): serialized config of matching strategy
    • feat(autoware_pointcloud_preprocessor): update msg
    • feat(autoware_pointcloud_preprocessor): update msg (2)
    • docs(autoware_pointcloud_preprocessor): add cloud info topic description
    • feat(autoware_pointcloud_preprocessor): add unit tests for cloud info
    • fix(autoware_pointcloud_preprocessor): pre-commit
    • fix(autoware_pointcloud_preprocessor): remove *_struct headers inclusion
    • fix(autoware_pointcloud_preprocessor): check if the matching strategy cannot be enumerated
    • test(autoware_pointcloud_preprocessor): full cloud repr
    • feat(autoware_pointcloud_preprocessor): auto success set & more unit tests
    • feat(autoware_pointcloud_preprocessor): publish info regardless cloud content
    • style(autoware_pointcloud_preprocessor): typo
    • feat(autoware_pointcloud_preprocessor): make update_concatenated_point_cloud_config static for easier integration

    * docs(autoware_pointcloud_preprocessor): typo Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>

    • fix(autoware_pointcloud_preprocessor): publish cloud info out of condition block
    • fix(autoware_pointcloud_preprocessor): container access with safe bound checking
    • style(autoware_pointcloud_preprocessor): unify naming convention (part 1 - content)
    • style(autoware_pointcloud_preprocessor): unify naming convention (part 2 - files name)
    • style(autoware_pointcloud_preprocessor): naming convention for main API
    • doc(autoware_pointcloud_preprocessor): add docstring

    * feat(autoware_pointcloud_preprocessor): add remap to launch files ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>

  • fix(pointcloud_preprocessor): handle empty pointclouds in pickup_based_downsample_filter (#11003)

File truncated at 100 lines see the full file

Launch files

  • launch/approximate_downsample_filter.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/approximate_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • approximate_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/approximate_downsample_filter_node.param.yaml]
  • launch/blockage_diag_node.launch.xml
      • input_topic_name [default: pointcloud_raw_ex]
      • output_topic_name [default: blockage_diag/pointcloud]
      • blockage_diagnostics_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/blockage_diag_node.param.yaml]
  • launch/concatenate_and_time_sync_node.launch.xml
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • output [default: /sensing/lidar/concatenated/pointcloud]
      • output_info [default: /sensing/lidar/concatenated/pointcloud_info]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_and_time_sync_node.param.yaml]
  • launch/concatenate_pointcloud.launch.xml
      • output [default: /sensing/lidar/concatenated/pointcloud]
      • output_info [default: /sensing/lidar/concatenated/pointcloud_info]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_pointclouds.param.yaml]
  • launch/crop_box_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/self_cropped/pointcloud_ex]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • crop_box_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/crop_box_filter_node.param.yaml]
  • launch/distortion_corrector_node.launch.xml
      • input/pointcloud [default: /sensing/lidar/top/mirror_cropped/pointcloud_ex]
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • input/imu [default: /sensing/imu/imu_data]
      • output/pointcloud [default: /sensing/lidar/top/rectified/pointcloud_ex]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/distortion_corrector_node.param.yaml]
  • launch/dual_return_outlier_filter_node.launch.xml
      • input_topic_name [default: /pointcloud]
      • output_topic_name [default: /pointcloud_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • dual_return_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/dual_return_outlier_filter_node.param.yaml]
  • launch/lanelet2_map_filter_node.launch.xml
      • input_vector_map [default: /map/vector_map]
      • input_pointcloud [default: detection_area/pointcloud]
      • output_pointcloud [default: vector_map_filtered/pointcloud]
      • lanelet2_map_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/lanelet2_map_filter_node.param.yaml]
  • launch/pickup_based_voxel_grid_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/pickup_based_voxel_grid_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • pickup_based_voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pickup_based_voxel_grid_downsample_filter_node.param.yaml]
  • launch/pointcloud_accumulator_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_accumulated]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • pointcloud_accumulator_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pointcloud_accumulator_node.param.yaml]
  • launch/preprocessor.launch.xml
      • input_points_raw_list [default: ['/points_raw']]
      • output_points_raw [default: /points_raw/cropbox/filtered]
      • tf_output_frame [default: base_link]
  • launch/radius_search_2d_outlier_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_filtered]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • radius_search_2d_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/radius_search_2d_outlier_filter_node.param.yaml]
  • launch/random_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/random_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • random_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/random_downsample_filter_node.param.yaml]
  • launch/ring_outlier_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_ring_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • ring_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/ring_outlier_filter_node.param.yaml]
  • launch/ring_passthrough_filter.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/ring_passthrough_filtered/pointcloud]
      • input_frame [default: ]
      • output_frame [default: base_link]
      • passthrough_filter_uint16_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/passthrough_filter_uint16_node.param.yaml]
  • launch/time_synchronizer_node.launch.xml
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/time_synchronizer_node.param.yaml]
  • launch/vector_map_inside_area_filter_node.launch.xml
      • input_vector_map [default: /map/vector_map]
      • input_pointcloud [default: compare_map_filtered/pointcloud]
      • output_pointcloud [default: vector_map_inside_area_filtered/pointcloud]
      • vector_map_inside_area_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/vector_map_inside_area_filter_node.param.yaml]
  • launch/voxel_grid_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/voxel_grid_downsample_filter/pointcloud]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_downsample_filter_node.param.yaml]
  • launch/voxel_grid_outlier_filter_node.launch.xml
      • input_topic_name [default: /pointcloud_raw]
      • output_topic_name [default: /pointcloud_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • voxel_grid_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_outlier_filter_node.param.yaml]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_pointcloud_preprocessor at Robotics Stack Exchange

No version for distro noetic showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_pointcloud_preprocessor package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

The ROS 2 autoware_pointcloud_preprocessor package

Additional Links

No additional links.

Maintainers

  • amc-nu
  • Yukihiro Saito
  • Kyoichi Sugahara
  • Dai Nguyen
  • Kenzo Lobos-Tsunekawa
  • Yihsiang Fang
  • Yoshi Ri
  • David Wong
  • Melike Tanrikulu
  • Max Schmeller
  • Kaan Colak

Authors

  • Open Perception
  • Julius Kammerl
  • William Woodall

autoware_pointcloud_preprocessor

Purpose

The autoware_pointcloud_preprocessor is a package that includes the following filters:

  • removing outlier points
  • cropping
  • concatenating pointclouds
  • correcting distortion
  • downsampling
  • densifying pointclouds

Inner-workings / Algorithms

Detail description of each filter’s algorithm is in the following links.

Filter Name Description Detail
concatenate_data subscribe multiple pointclouds and concatenate them into a pointcloud link
crop_box_filter remove points within a given box link
distortion_corrector compensate pointcloud distortion caused by ego vehicle’s movement during 1 scan link
downsample_filter downsampling input pointcloud link
outlier_filter remove points caused by hardware problems, rain drops and small insects as a noise link
passthrough_filter remove points on the outside of a range in given field (e.g. x, y, z, intensity) link
pointcloud_accumulator accumulate pointclouds for a given amount of time link
pointcloud_densifier enhance sparse point clouds by using information from previous frames link
vector_map_filter remove points on the outside of lane by using vector map link
vector_map_inside_area_filter remove points inside of vector map area that has given type by parameter link

Inputs / Outputs

Input

Name Type Description
~/input/points sensor_msgs::msg::PointCloud2 reference points
~/input/indices pcl_msgs::msg::Indices reference indices

Output

Name Type Description
~/output/points sensor_msgs::msg::PointCloud2 filtered points

Parameters

Node Parameters

Name Type Default Value Description
input_frame string ” “ input frame id
output_frame string ” “ output frame id
max_queue_size int 5 max queue size of input/output topics
use_indices bool false flag to use pointcloud indices
latched_indices bool false flag to latch pointcloud indices
approximate_sync bool false flag to use approximate sync option

Assumptions / Known limits

autoware::pointcloud_preprocessor::Filter is implemented based on pcl_perception [1] because of this issue.

Measuring the performance

In Autoware, point cloud data from each LiDAR sensor undergoes preprocessing in the sensing pipeline before being input into the perception pipeline. The preprocessing stages are illustrated in the diagram below:

pointcloud_preprocess_pipeline.drawio.png

Each stage in the pipeline incurs a processing delay. Mostly, we’ve used ros2 topic delay /topic_name to measure the time between the message header and the current time. This approach works well for small-sized messages. However, when dealing with large point cloud messages, this method introduces an additional delay. This is primarily because accessing these large point cloud messages externally impacts the pipeline’s performance.

Our sensing/perception nodes are designed to run within composable node containers, leveraging intra-process communication. External subscriptions to these messages (like using ros2 topic delay or rviz2) impose extra delays and can even slow down the pipeline by subscribing externally. Therefore, these measurements will not be accurate.

To mitigate this issue, we’ve adopted a method where each node in the pipeline reports its pipeline latency time. This approach ensures the integrity of intra-process communication and provides a more accurate measure of delays in the pipeline.

Benchmarking The Pipeline

The nodes within the pipeline report the pipeline latency time, indicating the duration from the sensor driver’s pointcloud output to the node’s output. This data is crucial for assessing the pipeline’s health and efficiency.

When running Autoware, you can monitor the pipeline latency times for each node in the pipeline by subscribing to the following ROS 2 topics:

  • /sensing/lidar/LidarX/crop_box_filter_self/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/crop_box_filter_mirror/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/distortion_corrector/debug/pipeline_latency_ms
  • /sensing/lidar/LidarX/ring_outlier_filter/debug/pipeline_latency_ms
  • /sensing/lidar/concatenate_data_synchronizer/debug/sensing/lidar/LidarX/pointcloud/pipeline_latency_ms

These topics provide the pipeline latency times, giving insights into the delays at various stages of the pipeline from the sensor output of LidarX to each subsequent node.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_pointcloud_preprocessor

0.47.0 (2025-08-11)

  • refactor(pointcloud_preprocessor): extract downsample logic from pickup_based_voxel_downsample_filter (#11098)

    • feat(pointcloud_preprocessor): add voxel size struct and downsampling function to pickup based filter
    • refactor(pointcloud_preprocessor): use point_cloud2_iterator to handle pointcloud
    • refactor(pointcloud_preprocessor): pass VoxelSize by const reference to improve performance
    • feat(pointcloud_preprocessor): enhance voxel grid downsampling tests with additional scenarios
    • feat(pointcloud_preprocessor): refactor downsampling logic to extract unique voxel point indices and copy filtered points
    • fix(pointcloud_preprocessor): optimize voxel point index extraction and memory copying in downsampling
    • refactor(pointcloud_preprocessor): rename voxel_map to index_map for clarity in downsampling functions
    • refactor(pointcloud_preprocessor): remove unused includes
    • chore(pointcloud_preprocessor): apply clang-format and cpplint
    • chore(pointcloud_preprocessor): fix linter error
    • style(pre-commit): autofix
    • style(poincloud_preprocessor): adjust clang-format directives for consistency
    • fix(pointcloud_preprocessor): correct function name from copy_filtered_point to copy_filtered_points
    • fix(pointcloud_preprocessor): update parameter type from ConstSharedPtr to reference

    * refactor(pointcloud_preprocessor): consolidate voxel size parameters into a single struct ---------Co-authored-by: Takahisa.Ishikawa <<takahisa.ishikawa@tier4.jp>> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info (#10851)

    • feat(autoware_pointcloud_preprocessor): add publisher for concatenated pointcloud meta info
    • style(pre-commit): autofix
    • feat(autoware_cuda_pointcloud_preprocessor): handle concatenated pointcloud meta info
    • feat(autoware_pointcloud_preprocessor): serialized config of matching strategy
    • feat(autoware_pointcloud_preprocessor): update msg
    • feat(autoware_pointcloud_preprocessor): update msg (2)
    • docs(autoware_pointcloud_preprocessor): add cloud info topic description
    • feat(autoware_pointcloud_preprocessor): add unit tests for cloud info
    • fix(autoware_pointcloud_preprocessor): pre-commit
    • fix(autoware_pointcloud_preprocessor): remove *_struct headers inclusion
    • fix(autoware_pointcloud_preprocessor): check if the matching strategy cannot be enumerated
    • test(autoware_pointcloud_preprocessor): full cloud repr
    • feat(autoware_pointcloud_preprocessor): auto success set & more unit tests
    • feat(autoware_pointcloud_preprocessor): publish info regardless cloud content
    • style(autoware_pointcloud_preprocessor): typo
    • feat(autoware_pointcloud_preprocessor): make update_concatenated_point_cloud_config static for easier integration

    * docs(autoware_pointcloud_preprocessor): typo Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>

    • fix(autoware_pointcloud_preprocessor): publish cloud info out of condition block
    • fix(autoware_pointcloud_preprocessor): container access with safe bound checking
    • style(autoware_pointcloud_preprocessor): unify naming convention (part 1 - content)
    • style(autoware_pointcloud_preprocessor): unify naming convention (part 2 - files name)
    • style(autoware_pointcloud_preprocessor): naming convention for main API
    • doc(autoware_pointcloud_preprocessor): add docstring

    * feat(autoware_pointcloud_preprocessor): add remap to launch files ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Max Schmeller <<6088931+mojomex@users.noreply.github.com>>

  • fix(pointcloud_preprocessor): handle empty pointclouds in pickup_based_downsample_filter (#11003)

File truncated at 100 lines see the full file

Launch files

  • launch/approximate_downsample_filter.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/approximate_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • approximate_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/approximate_downsample_filter_node.param.yaml]
  • launch/blockage_diag_node.launch.xml
      • input_topic_name [default: pointcloud_raw_ex]
      • output_topic_name [default: blockage_diag/pointcloud]
      • blockage_diagnostics_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/blockage_diag_node.param.yaml]
  • launch/concatenate_and_time_sync_node.launch.xml
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • output [default: /sensing/lidar/concatenated/pointcloud]
      • output_info [default: /sensing/lidar/concatenated/pointcloud_info]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_and_time_sync_node.param.yaml]
  • launch/concatenate_pointcloud.launch.xml
      • output [default: /sensing/lidar/concatenated/pointcloud]
      • output_info [default: /sensing/lidar/concatenated/pointcloud_info]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/concatenate_pointclouds.param.yaml]
  • launch/crop_box_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/self_cropped/pointcloud_ex]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • crop_box_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/crop_box_filter_node.param.yaml]
  • launch/distortion_corrector_node.launch.xml
      • input/pointcloud [default: /sensing/lidar/top/mirror_cropped/pointcloud_ex]
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • input/imu [default: /sensing/imu/imu_data]
      • output/pointcloud [default: /sensing/lidar/top/rectified/pointcloud_ex]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/distortion_corrector_node.param.yaml]
  • launch/dual_return_outlier_filter_node.launch.xml
      • input_topic_name [default: /pointcloud]
      • output_topic_name [default: /pointcloud_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • dual_return_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/dual_return_outlier_filter_node.param.yaml]
  • launch/lanelet2_map_filter_node.launch.xml
      • input_vector_map [default: /map/vector_map]
      • input_pointcloud [default: detection_area/pointcloud]
      • output_pointcloud [default: vector_map_filtered/pointcloud]
      • lanelet2_map_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/lanelet2_map_filter_node.param.yaml]
  • launch/pickup_based_voxel_grid_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/pickup_based_voxel_grid_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • pickup_based_voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pickup_based_voxel_grid_downsample_filter_node.param.yaml]
  • launch/pointcloud_accumulator_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_accumulated]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • pointcloud_accumulator_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/pointcloud_accumulator_node.param.yaml]
  • launch/preprocessor.launch.xml
      • input_points_raw_list [default: ['/points_raw']]
      • output_points_raw [default: /points_raw/cropbox/filtered]
      • tf_output_frame [default: base_link]
  • launch/radius_search_2d_outlier_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_filtered]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • radius_search_2d_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/radius_search_2d_outlier_filter_node.param.yaml]
  • launch/random_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/random_downsample_filter/pointcloud]
      • input_frame [default: ]
      • output_frame [default: ]
      • random_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/random_downsample_filter_node.param.yaml]
  • launch/ring_outlier_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw_ex]
      • output_topic_name [default: /sensing/lidar/top/pointcloud_ring_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • ring_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/ring_outlier_filter_node.param.yaml]
  • launch/ring_passthrough_filter.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/ring_passthrough_filtered/pointcloud]
      • input_frame [default: ]
      • output_frame [default: base_link]
      • passthrough_filter_uint16_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/passthrough_filter_uint16_node.param.yaml]
  • launch/time_synchronizer_node.launch.xml
      • input/twist [default: /sensing/vehicle_velocity_converter/twist_with_covariance]
      • param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/time_synchronizer_node.param.yaml]
  • launch/vector_map_inside_area_filter_node.launch.xml
      • input_vector_map [default: /map/vector_map]
      • input_pointcloud [default: compare_map_filtered/pointcloud]
      • output_pointcloud [default: vector_map_inside_area_filtered/pointcloud]
      • vector_map_inside_area_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/vector_map_inside_area_filter_node.param.yaml]
  • launch/voxel_grid_downsample_filter_node.launch.xml
      • input_topic_name [default: /sensing/lidar/top/pointcloud_raw]
      • output_topic_name [default: /sensing/lidar/top/voxel_grid_downsample_filter/pointcloud]
      • input_frame [default: base_link]
      • output_frame [default: base_link]
      • voxel_grid_downsample_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_downsample_filter_node.param.yaml]
  • launch/voxel_grid_outlier_filter_node.launch.xml
      • input_topic_name [default: /pointcloud_raw]
      • output_topic_name [default: /pointcloud_filtered]
      • input_frame [default: ]
      • output_frame [default: ]
      • voxel_grid_outlier_filter_param_file [default: $(find-pkg-share autoware_pointcloud_preprocessor)/config/voxel_grid_outlier_filter_node.param.yaml]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_pointcloud_preprocessor at Robotics Stack Exchange