Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Yukihiro Saito
- Dai Nguyen
- Lei Gu
- Taekjin Lee
Authors
autoware_euclidean_cluster
Purpose
autoware_euclidean_cluster is a package for clustering points into smaller parts to classify objects.
This package has two clustering methods: euclidean_cluster
and voxel_grid_based_euclidean_cluster
.
Inner-workings / Algorithms
euclidean_cluster
pcl::EuclideanClusterExtraction
is applied to points. See official document for details.
voxel_grid_based_euclidean_cluster
- A centroid in each voxel is calculated by
pcl::VoxelGrid
. - The centroids are clustered by
pcl::EuclideanClusterExtraction
. - The input points are clustered based on the clustered centroids.
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
input |
sensor_msgs::msg::PointCloud2 |
input pointcloud |
Output
Name | Type | Description |
---|---|---|
output |
tier4_perception_msgs::msg::DetectedObjectsWithFeature |
cluster pointcloud |
debug/clusters |
sensor_msgs::msg::PointCloud2 |
colored cluster pointcloud for visualization |
Parameters
Core Parameters
euclidean_cluster
Name | Type | Description |
---|---|---|
use_height |
bool | use point.z for clustering |
min_cluster_size |
int | the minimum number of points that a cluster needs to contain in order to be considered valid |
max_cluster_size |
int | the maximum number of points that a cluster needs to contain in order to be considered valid |
tolerance |
float | the spatial cluster tolerance as a measure in the L2 Euclidean space |
voxel_grid_based_euclidean_cluster
Name | Type | Description |
---|---|---|
use_height |
bool | use point.z for clustering |
min_cluster_size |
int | the minimum number of voxels that a cluster needs to contain in order to be considered valid |
max_cluster_size |
int | the maximum number of voxels that a cluster needs to contain in order to be considered valid |
tolerance |
float | the spatial cluster tolerance as a measure in the L2 Euclidean space |
voxel_leaf_size |
float | the voxel leaf size of x and y |
min_points_number_per_voxel |
int | the minimum number of points for a voxel |
min_voxel_cluster_size_for_filtering |
int | The minimum voxel cluster size for a cluster to be checked for being a large cluster. |
max_points_per_voxel_in_large_cluster |
int | The maximum points per voxel allowed in large clusters (used for filtering dense clusters). |
max_voxel_cluster_for_output |
int | The maximum number of voxel clusters to output. If the voxels exceeds this value, the cluster will be skipped. |
Assumptions / Known limits
(Optional) Error detection and handling
(Optional) Performance characterization
(Optional) References/External links
<!– Write links you referred to when you implemented.
Example: [1] {link_to_a_thesis} [2] {link_to_an_issue}
File truncated at 100 lines see the full file
Changelog for package autoware_euclidean_cluster
0.47.0 (2025-08-11)
0.46.0 (2025-06-20)
-
Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base
-
feat(autoware_pointcloud_preprocessor): add diagnostic message (#10579)
- feat: add diag msg
- chore: fix code
- chore: remove outlier count in ring
- chore: move format timestamp to utility
- chore: add paramter to schema
- chore: add parameter for cluster
- chore: clean code
- chore: fix schema
- chore: move diagnostic updater to filter base class
- chore: fix schema
- chore: fix spell error
- chore: set up diagnostic updater
- refactor: utilize autoware_utils diagnostic message
- chore: add publish
- chore: add detail message
- chore: const for time difference
- refactor: structure diagnostics to class
- chore: const reference
- chore: clean logic
- chore: modify function name
- chore: update parameter
- chore: move evaluate status into diagnostic
- chore: fix description for concatenated pointcloud
- chore: timestamp mismatch threshold
- chore: fix diagnostic key
* chore: change function naming ---------
-
feat(autoware_euclidean_cluster): enhance VoxelGridBasedEuclideanCluster with Large Cluster Filtering Parameters (#10618)
* Squashed commit of the following: commit cf3035909ccad94003b2b06f8608b6cb887b221a Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 11:34:32 2025 +0900 debugging impl removed commit 17ee5fc61053e1ff816294a962d9f61dc73cd164 Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 11:24:04 2025 +0900 parameters reading finished commit 6731b5150344515fce11bf5c0128a20145a0b6a8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 09:50:47 2025 +0900 euclidean cluster filter commit 4a65dafec7728209dc4015c513920215d259ddae Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 15:46:07 2025 +0900 Squashed commit of the following: commit 699e657c3997e0c3457d9c1f5fffe1081c4433cc Merge: 4833afd811 e876ece2f8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 11:14:48 2025 +0900 Merge branch 'main' into feat/autoware_perception_rviz_plugin/detected_objects_with_feature_display commit 4833afd8114364625a4a9a82b237e72a09c737be Author: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Fri May 9 02:13:09 2025 +0000 style(pre-commit): autofix commit d7bf97d85c1c97300adf52b7ace62a7c08b78402 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 10:53:33 2025 +0900 fix all problems of rviz commit 91ec2882a505df6996d49a2395f977eae1841314 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 19:22:56 2025 +0900 format fix commit fa1e680ab138253831398c51c415dd3861ea298b Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 17:56:16 2025 +0900 helper to better structure commit 2e4ba008e8c3351fc12f33b79f2fe41c492b1f3c Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 16:26:16 2025 +0900 colorbar visualization optimized commit 25e4b9f4131cf38ce89c9b8b28dee0ed6562a4c3 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 15:42:48 2025 +0900 basic functions all implemented commit 3e3db86a1f3ff266cb00b8b83fa57231ee8e2fb8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 10:31:02 2025 +0900 colorbar commit a6be3ce4a2a3fc48b54ba798af7875d6b071d88b Author: lei.gu <<lei.gu@tier4.jp>> Date: Wed May 7 18:05:45 2025 +0900 colormap fully implemented commit 46762b344541580d3411f61ea78828e5f35d9cfb Author: lei.gu <<lei.gu@tier4.jp>> Date: Wed May 7 17:49:07 2025 +0900 colormap implemented commit e3024f1d2865ca76c0b8e338fa5c2d6bd282dd22 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu Apr 17 10:30:24 2025 +0900 feat(euclidean_cluster): add markers for clusters remove filter profiling rviz detected_objects_with_feature detected objects stage all commits Revert non-visualization changes to state of 43480ef7 commit daef21efb35bc0c4dc2fe9009906199d2b3cf9b1 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 15:36:16 2025 +0900 colorbar
- style(pre-commit): autofix
- corresponding part of VoxelGridBasedEuclideanCluster used in detection by tracker
- style(pre-commit): autofix
- cluster point number diag removed
- add max_num_points_per_cluster
- euclidean cluster diag impl restored
- add comments for the parameters
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Name |
---|
libpcl-all-dev |
Dependant Packages
Launch files
- launch/euclidean_cluster.launch.xml
-
- input_pointcloud [default: /perception/obstacle_segmentation/pointcloud]
- input_map [default: /map/pointcloud_map]
- output_clusters [default: clusters]
- use_low_height_cropbox [default: false]
- euclidean_param_path [default: $(find-pkg-share autoware_euclidean_cluster)/config/euclidean_cluster.param.yaml]
- use_pointcloud_container [default: false]
- pointcloud_container_name [default: pointcloud_container]
- launch/voxel_grid_based_euclidean_cluster.launch.xml
-
- input_pointcloud [default: /perception/obstacle_segmentation/pointcloud]
- input_map [default: /map/pointcloud_map]
- output_clusters [default: clusters]
- use_low_height_cropbox [default: false]
- voxel_grid_based_euclidean_param_path [default: $(find-pkg-share autoware_euclidean_cluster)/config/voxel_grid_based_euclidean_cluster.param.yaml]
- use_pointcloud_container [default: false]
- pointcloud_container_name [default: pointcloud_container]
Messages
Services
Plugins
Recent questions tagged autoware_euclidean_cluster at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Yukihiro Saito
- Dai Nguyen
- Lei Gu
- Taekjin Lee
Authors
autoware_euclidean_cluster
Purpose
autoware_euclidean_cluster is a package for clustering points into smaller parts to classify objects.
This package has two clustering methods: euclidean_cluster
and voxel_grid_based_euclidean_cluster
.
Inner-workings / Algorithms
euclidean_cluster
pcl::EuclideanClusterExtraction
is applied to points. See official document for details.
voxel_grid_based_euclidean_cluster
- A centroid in each voxel is calculated by
pcl::VoxelGrid
. - The centroids are clustered by
pcl::EuclideanClusterExtraction
. - The input points are clustered based on the clustered centroids.
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
input |
sensor_msgs::msg::PointCloud2 |
input pointcloud |
Output
Name | Type | Description |
---|---|---|
output |
tier4_perception_msgs::msg::DetectedObjectsWithFeature |
cluster pointcloud |
debug/clusters |
sensor_msgs::msg::PointCloud2 |
colored cluster pointcloud for visualization |
Parameters
Core Parameters
euclidean_cluster
Name | Type | Description |
---|---|---|
use_height |
bool | use point.z for clustering |
min_cluster_size |
int | the minimum number of points that a cluster needs to contain in order to be considered valid |
max_cluster_size |
int | the maximum number of points that a cluster needs to contain in order to be considered valid |
tolerance |
float | the spatial cluster tolerance as a measure in the L2 Euclidean space |
voxel_grid_based_euclidean_cluster
Name | Type | Description |
---|---|---|
use_height |
bool | use point.z for clustering |
min_cluster_size |
int | the minimum number of voxels that a cluster needs to contain in order to be considered valid |
max_cluster_size |
int | the maximum number of voxels that a cluster needs to contain in order to be considered valid |
tolerance |
float | the spatial cluster tolerance as a measure in the L2 Euclidean space |
voxel_leaf_size |
float | the voxel leaf size of x and y |
min_points_number_per_voxel |
int | the minimum number of points for a voxel |
min_voxel_cluster_size_for_filtering |
int | The minimum voxel cluster size for a cluster to be checked for being a large cluster. |
max_points_per_voxel_in_large_cluster |
int | The maximum points per voxel allowed in large clusters (used for filtering dense clusters). |
max_voxel_cluster_for_output |
int | The maximum number of voxel clusters to output. If the voxels exceeds this value, the cluster will be skipped. |
Assumptions / Known limits
(Optional) Error detection and handling
(Optional) Performance characterization
(Optional) References/External links
<!– Write links you referred to when you implemented.
Example: [1] {link_to_a_thesis} [2] {link_to_an_issue}
File truncated at 100 lines see the full file
Changelog for package autoware_euclidean_cluster
0.47.0 (2025-08-11)
0.46.0 (2025-06-20)
-
Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base
-
feat(autoware_pointcloud_preprocessor): add diagnostic message (#10579)
- feat: add diag msg
- chore: fix code
- chore: remove outlier count in ring
- chore: move format timestamp to utility
- chore: add paramter to schema
- chore: add parameter for cluster
- chore: clean code
- chore: fix schema
- chore: move diagnostic updater to filter base class
- chore: fix schema
- chore: fix spell error
- chore: set up diagnostic updater
- refactor: utilize autoware_utils diagnostic message
- chore: add publish
- chore: add detail message
- chore: const for time difference
- refactor: structure diagnostics to class
- chore: const reference
- chore: clean logic
- chore: modify function name
- chore: update parameter
- chore: move evaluate status into diagnostic
- chore: fix description for concatenated pointcloud
- chore: timestamp mismatch threshold
- chore: fix diagnostic key
* chore: change function naming ---------
-
feat(autoware_euclidean_cluster): enhance VoxelGridBasedEuclideanCluster with Large Cluster Filtering Parameters (#10618)
* Squashed commit of the following: commit cf3035909ccad94003b2b06f8608b6cb887b221a Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 11:34:32 2025 +0900 debugging impl removed commit 17ee5fc61053e1ff816294a962d9f61dc73cd164 Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 11:24:04 2025 +0900 parameters reading finished commit 6731b5150344515fce11bf5c0128a20145a0b6a8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 09:50:47 2025 +0900 euclidean cluster filter commit 4a65dafec7728209dc4015c513920215d259ddae Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 15:46:07 2025 +0900 Squashed commit of the following: commit 699e657c3997e0c3457d9c1f5fffe1081c4433cc Merge: 4833afd811 e876ece2f8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 11:14:48 2025 +0900 Merge branch 'main' into feat/autoware_perception_rviz_plugin/detected_objects_with_feature_display commit 4833afd8114364625a4a9a82b237e72a09c737be Author: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Fri May 9 02:13:09 2025 +0000 style(pre-commit): autofix commit d7bf97d85c1c97300adf52b7ace62a7c08b78402 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 10:53:33 2025 +0900 fix all problems of rviz commit 91ec2882a505df6996d49a2395f977eae1841314 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 19:22:56 2025 +0900 format fix commit fa1e680ab138253831398c51c415dd3861ea298b Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 17:56:16 2025 +0900 helper to better structure commit 2e4ba008e8c3351fc12f33b79f2fe41c492b1f3c Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 16:26:16 2025 +0900 colorbar visualization optimized commit 25e4b9f4131cf38ce89c9b8b28dee0ed6562a4c3 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 15:42:48 2025 +0900 basic functions all implemented commit 3e3db86a1f3ff266cb00b8b83fa57231ee8e2fb8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 10:31:02 2025 +0900 colorbar commit a6be3ce4a2a3fc48b54ba798af7875d6b071d88b Author: lei.gu <<lei.gu@tier4.jp>> Date: Wed May 7 18:05:45 2025 +0900 colormap fully implemented commit 46762b344541580d3411f61ea78828e5f35d9cfb Author: lei.gu <<lei.gu@tier4.jp>> Date: Wed May 7 17:49:07 2025 +0900 colormap implemented commit e3024f1d2865ca76c0b8e338fa5c2d6bd282dd22 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu Apr 17 10:30:24 2025 +0900 feat(euclidean_cluster): add markers for clusters remove filter profiling rviz detected_objects_with_feature detected objects stage all commits Revert non-visualization changes to state of 43480ef7 commit daef21efb35bc0c4dc2fe9009906199d2b3cf9b1 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 15:36:16 2025 +0900 colorbar
- style(pre-commit): autofix
- corresponding part of VoxelGridBasedEuclideanCluster used in detection by tracker
- style(pre-commit): autofix
- cluster point number diag removed
- add max_num_points_per_cluster
- euclidean cluster diag impl restored
- add comments for the parameters
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Name |
---|
libpcl-all-dev |
Dependant Packages
Launch files
- launch/euclidean_cluster.launch.xml
-
- input_pointcloud [default: /perception/obstacle_segmentation/pointcloud]
- input_map [default: /map/pointcloud_map]
- output_clusters [default: clusters]
- use_low_height_cropbox [default: false]
- euclidean_param_path [default: $(find-pkg-share autoware_euclidean_cluster)/config/euclidean_cluster.param.yaml]
- use_pointcloud_container [default: false]
- pointcloud_container_name [default: pointcloud_container]
- launch/voxel_grid_based_euclidean_cluster.launch.xml
-
- input_pointcloud [default: /perception/obstacle_segmentation/pointcloud]
- input_map [default: /map/pointcloud_map]
- output_clusters [default: clusters]
- use_low_height_cropbox [default: false]
- voxel_grid_based_euclidean_param_path [default: $(find-pkg-share autoware_euclidean_cluster)/config/voxel_grid_based_euclidean_cluster.param.yaml]
- use_pointcloud_container [default: false]
- pointcloud_container_name [default: pointcloud_container]
Messages
Services
Plugins
Recent questions tagged autoware_euclidean_cluster at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Yukihiro Saito
- Dai Nguyen
- Lei Gu
- Taekjin Lee
Authors
autoware_euclidean_cluster
Purpose
autoware_euclidean_cluster is a package for clustering points into smaller parts to classify objects.
This package has two clustering methods: euclidean_cluster
and voxel_grid_based_euclidean_cluster
.
Inner-workings / Algorithms
euclidean_cluster
pcl::EuclideanClusterExtraction
is applied to points. See official document for details.
voxel_grid_based_euclidean_cluster
- A centroid in each voxel is calculated by
pcl::VoxelGrid
. - The centroids are clustered by
pcl::EuclideanClusterExtraction
. - The input points are clustered based on the clustered centroids.
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
input |
sensor_msgs::msg::PointCloud2 |
input pointcloud |
Output
Name | Type | Description |
---|---|---|
output |
tier4_perception_msgs::msg::DetectedObjectsWithFeature |
cluster pointcloud |
debug/clusters |
sensor_msgs::msg::PointCloud2 |
colored cluster pointcloud for visualization |
Parameters
Core Parameters
euclidean_cluster
Name | Type | Description |
---|---|---|
use_height |
bool | use point.z for clustering |
min_cluster_size |
int | the minimum number of points that a cluster needs to contain in order to be considered valid |
max_cluster_size |
int | the maximum number of points that a cluster needs to contain in order to be considered valid |
tolerance |
float | the spatial cluster tolerance as a measure in the L2 Euclidean space |
voxel_grid_based_euclidean_cluster
Name | Type | Description |
---|---|---|
use_height |
bool | use point.z for clustering |
min_cluster_size |
int | the minimum number of voxels that a cluster needs to contain in order to be considered valid |
max_cluster_size |
int | the maximum number of voxels that a cluster needs to contain in order to be considered valid |
tolerance |
float | the spatial cluster tolerance as a measure in the L2 Euclidean space |
voxel_leaf_size |
float | the voxel leaf size of x and y |
min_points_number_per_voxel |
int | the minimum number of points for a voxel |
min_voxel_cluster_size_for_filtering |
int | The minimum voxel cluster size for a cluster to be checked for being a large cluster. |
max_points_per_voxel_in_large_cluster |
int | The maximum points per voxel allowed in large clusters (used for filtering dense clusters). |
max_voxel_cluster_for_output |
int | The maximum number of voxel clusters to output. If the voxels exceeds this value, the cluster will be skipped. |
Assumptions / Known limits
(Optional) Error detection and handling
(Optional) Performance characterization
(Optional) References/External links
<!– Write links you referred to when you implemented.
Example: [1] {link_to_a_thesis} [2] {link_to_an_issue}
File truncated at 100 lines see the full file
Changelog for package autoware_euclidean_cluster
0.47.0 (2025-08-11)
0.46.0 (2025-06-20)
-
Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base
-
feat(autoware_pointcloud_preprocessor): add diagnostic message (#10579)
- feat: add diag msg
- chore: fix code
- chore: remove outlier count in ring
- chore: move format timestamp to utility
- chore: add paramter to schema
- chore: add parameter for cluster
- chore: clean code
- chore: fix schema
- chore: move diagnostic updater to filter base class
- chore: fix schema
- chore: fix spell error
- chore: set up diagnostic updater
- refactor: utilize autoware_utils diagnostic message
- chore: add publish
- chore: add detail message
- chore: const for time difference
- refactor: structure diagnostics to class
- chore: const reference
- chore: clean logic
- chore: modify function name
- chore: update parameter
- chore: move evaluate status into diagnostic
- chore: fix description for concatenated pointcloud
- chore: timestamp mismatch threshold
- chore: fix diagnostic key
* chore: change function naming ---------
-
feat(autoware_euclidean_cluster): enhance VoxelGridBasedEuclideanCluster with Large Cluster Filtering Parameters (#10618)
* Squashed commit of the following: commit cf3035909ccad94003b2b06f8608b6cb887b221a Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 11:34:32 2025 +0900 debugging impl removed commit 17ee5fc61053e1ff816294a962d9f61dc73cd164 Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 11:24:04 2025 +0900 parameters reading finished commit 6731b5150344515fce11bf5c0128a20145a0b6a8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 09:50:47 2025 +0900 euclidean cluster filter commit 4a65dafec7728209dc4015c513920215d259ddae Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 15:46:07 2025 +0900 Squashed commit of the following: commit 699e657c3997e0c3457d9c1f5fffe1081c4433cc Merge: 4833afd811 e876ece2f8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 11:14:48 2025 +0900 Merge branch 'main' into feat/autoware_perception_rviz_plugin/detected_objects_with_feature_display commit 4833afd8114364625a4a9a82b237e72a09c737be Author: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Fri May 9 02:13:09 2025 +0000 style(pre-commit): autofix commit d7bf97d85c1c97300adf52b7ace62a7c08b78402 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 10:53:33 2025 +0900 fix all problems of rviz commit 91ec2882a505df6996d49a2395f977eae1841314 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 19:22:56 2025 +0900 format fix commit fa1e680ab138253831398c51c415dd3861ea298b Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 17:56:16 2025 +0900 helper to better structure commit 2e4ba008e8c3351fc12f33b79f2fe41c492b1f3c Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 16:26:16 2025 +0900 colorbar visualization optimized commit 25e4b9f4131cf38ce89c9b8b28dee0ed6562a4c3 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 15:42:48 2025 +0900 basic functions all implemented commit 3e3db86a1f3ff266cb00b8b83fa57231ee8e2fb8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 10:31:02 2025 +0900 colorbar commit a6be3ce4a2a3fc48b54ba798af7875d6b071d88b Author: lei.gu <<lei.gu@tier4.jp>> Date: Wed May 7 18:05:45 2025 +0900 colormap fully implemented commit 46762b344541580d3411f61ea78828e5f35d9cfb Author: lei.gu <<lei.gu@tier4.jp>> Date: Wed May 7 17:49:07 2025 +0900 colormap implemented commit e3024f1d2865ca76c0b8e338fa5c2d6bd282dd22 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu Apr 17 10:30:24 2025 +0900 feat(euclidean_cluster): add markers for clusters remove filter profiling rviz detected_objects_with_feature detected objects stage all commits Revert non-visualization changes to state of 43480ef7 commit daef21efb35bc0c4dc2fe9009906199d2b3cf9b1 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 15:36:16 2025 +0900 colorbar
- style(pre-commit): autofix
- corresponding part of VoxelGridBasedEuclideanCluster used in detection by tracker
- style(pre-commit): autofix
- cluster point number diag removed
- add max_num_points_per_cluster
- euclidean cluster diag impl restored
- add comments for the parameters
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Name |
---|
libpcl-all-dev |
Dependant Packages
Launch files
- launch/euclidean_cluster.launch.xml
-
- input_pointcloud [default: /perception/obstacle_segmentation/pointcloud]
- input_map [default: /map/pointcloud_map]
- output_clusters [default: clusters]
- use_low_height_cropbox [default: false]
- euclidean_param_path [default: $(find-pkg-share autoware_euclidean_cluster)/config/euclidean_cluster.param.yaml]
- use_pointcloud_container [default: false]
- pointcloud_container_name [default: pointcloud_container]
- launch/voxel_grid_based_euclidean_cluster.launch.xml
-
- input_pointcloud [default: /perception/obstacle_segmentation/pointcloud]
- input_map [default: /map/pointcloud_map]
- output_clusters [default: clusters]
- use_low_height_cropbox [default: false]
- voxel_grid_based_euclidean_param_path [default: $(find-pkg-share autoware_euclidean_cluster)/config/voxel_grid_based_euclidean_cluster.param.yaml]
- use_pointcloud_container [default: false]
- pointcloud_container_name [default: pointcloud_container]
Messages
Services
Plugins
Recent questions tagged autoware_euclidean_cluster at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Yukihiro Saito
- Dai Nguyen
- Lei Gu
- Taekjin Lee
Authors
autoware_euclidean_cluster
Purpose
autoware_euclidean_cluster is a package for clustering points into smaller parts to classify objects.
This package has two clustering methods: euclidean_cluster
and voxel_grid_based_euclidean_cluster
.
Inner-workings / Algorithms
euclidean_cluster
pcl::EuclideanClusterExtraction
is applied to points. See official document for details.
voxel_grid_based_euclidean_cluster
- A centroid in each voxel is calculated by
pcl::VoxelGrid
. - The centroids are clustered by
pcl::EuclideanClusterExtraction
. - The input points are clustered based on the clustered centroids.
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
input |
sensor_msgs::msg::PointCloud2 |
input pointcloud |
Output
Name | Type | Description |
---|---|---|
output |
tier4_perception_msgs::msg::DetectedObjectsWithFeature |
cluster pointcloud |
debug/clusters |
sensor_msgs::msg::PointCloud2 |
colored cluster pointcloud for visualization |
Parameters
Core Parameters
euclidean_cluster
Name | Type | Description |
---|---|---|
use_height |
bool | use point.z for clustering |
min_cluster_size |
int | the minimum number of points that a cluster needs to contain in order to be considered valid |
max_cluster_size |
int | the maximum number of points that a cluster needs to contain in order to be considered valid |
tolerance |
float | the spatial cluster tolerance as a measure in the L2 Euclidean space |
voxel_grid_based_euclidean_cluster
Name | Type | Description |
---|---|---|
use_height |
bool | use point.z for clustering |
min_cluster_size |
int | the minimum number of voxels that a cluster needs to contain in order to be considered valid |
max_cluster_size |
int | the maximum number of voxels that a cluster needs to contain in order to be considered valid |
tolerance |
float | the spatial cluster tolerance as a measure in the L2 Euclidean space |
voxel_leaf_size |
float | the voxel leaf size of x and y |
min_points_number_per_voxel |
int | the minimum number of points for a voxel |
min_voxel_cluster_size_for_filtering |
int | The minimum voxel cluster size for a cluster to be checked for being a large cluster. |
max_points_per_voxel_in_large_cluster |
int | The maximum points per voxel allowed in large clusters (used for filtering dense clusters). |
max_voxel_cluster_for_output |
int | The maximum number of voxel clusters to output. If the voxels exceeds this value, the cluster will be skipped. |
Assumptions / Known limits
(Optional) Error detection and handling
(Optional) Performance characterization
(Optional) References/External links
<!– Write links you referred to when you implemented.
Example: [1] {link_to_a_thesis} [2] {link_to_an_issue}
File truncated at 100 lines see the full file
Changelog for package autoware_euclidean_cluster
0.47.0 (2025-08-11)
0.46.0 (2025-06-20)
-
Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base
-
feat(autoware_pointcloud_preprocessor): add diagnostic message (#10579)
- feat: add diag msg
- chore: fix code
- chore: remove outlier count in ring
- chore: move format timestamp to utility
- chore: add paramter to schema
- chore: add parameter for cluster
- chore: clean code
- chore: fix schema
- chore: move diagnostic updater to filter base class
- chore: fix schema
- chore: fix spell error
- chore: set up diagnostic updater
- refactor: utilize autoware_utils diagnostic message
- chore: add publish
- chore: add detail message
- chore: const for time difference
- refactor: structure diagnostics to class
- chore: const reference
- chore: clean logic
- chore: modify function name
- chore: update parameter
- chore: move evaluate status into diagnostic
- chore: fix description for concatenated pointcloud
- chore: timestamp mismatch threshold
- chore: fix diagnostic key
* chore: change function naming ---------
-
feat(autoware_euclidean_cluster): enhance VoxelGridBasedEuclideanCluster with Large Cluster Filtering Parameters (#10618)
* Squashed commit of the following: commit cf3035909ccad94003b2b06f8608b6cb887b221a Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 11:34:32 2025 +0900 debugging impl removed commit 17ee5fc61053e1ff816294a962d9f61dc73cd164 Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 11:24:04 2025 +0900 parameters reading finished commit 6731b5150344515fce11bf5c0128a20145a0b6a8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 09:50:47 2025 +0900 euclidean cluster filter commit 4a65dafec7728209dc4015c513920215d259ddae Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 15:46:07 2025 +0900 Squashed commit of the following: commit 699e657c3997e0c3457d9c1f5fffe1081c4433cc Merge: 4833afd811 e876ece2f8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 11:14:48 2025 +0900 Merge branch 'main' into feat/autoware_perception_rviz_plugin/detected_objects_with_feature_display commit 4833afd8114364625a4a9a82b237e72a09c737be Author: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Fri May 9 02:13:09 2025 +0000 style(pre-commit): autofix commit d7bf97d85c1c97300adf52b7ace62a7c08b78402 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 10:53:33 2025 +0900 fix all problems of rviz commit 91ec2882a505df6996d49a2395f977eae1841314 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 19:22:56 2025 +0900 format fix commit fa1e680ab138253831398c51c415dd3861ea298b Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 17:56:16 2025 +0900 helper to better structure commit 2e4ba008e8c3351fc12f33b79f2fe41c492b1f3c Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 16:26:16 2025 +0900 colorbar visualization optimized commit 25e4b9f4131cf38ce89c9b8b28dee0ed6562a4c3 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 15:42:48 2025 +0900 basic functions all implemented commit 3e3db86a1f3ff266cb00b8b83fa57231ee8e2fb8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 10:31:02 2025 +0900 colorbar commit a6be3ce4a2a3fc48b54ba798af7875d6b071d88b Author: lei.gu <<lei.gu@tier4.jp>> Date: Wed May 7 18:05:45 2025 +0900 colormap fully implemented commit 46762b344541580d3411f61ea78828e5f35d9cfb Author: lei.gu <<lei.gu@tier4.jp>> Date: Wed May 7 17:49:07 2025 +0900 colormap implemented commit e3024f1d2865ca76c0b8e338fa5c2d6bd282dd22 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu Apr 17 10:30:24 2025 +0900 feat(euclidean_cluster): add markers for clusters remove filter profiling rviz detected_objects_with_feature detected objects stage all commits Revert non-visualization changes to state of 43480ef7 commit daef21efb35bc0c4dc2fe9009906199d2b3cf9b1 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 15:36:16 2025 +0900 colorbar
- style(pre-commit): autofix
- corresponding part of VoxelGridBasedEuclideanCluster used in detection by tracker
- style(pre-commit): autofix
- cluster point number diag removed
- add max_num_points_per_cluster
- euclidean cluster diag impl restored
- add comments for the parameters
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Name |
---|
libpcl-all-dev |
Dependant Packages
Launch files
- launch/euclidean_cluster.launch.xml
-
- input_pointcloud [default: /perception/obstacle_segmentation/pointcloud]
- input_map [default: /map/pointcloud_map]
- output_clusters [default: clusters]
- use_low_height_cropbox [default: false]
- euclidean_param_path [default: $(find-pkg-share autoware_euclidean_cluster)/config/euclidean_cluster.param.yaml]
- use_pointcloud_container [default: false]
- pointcloud_container_name [default: pointcloud_container]
- launch/voxel_grid_based_euclidean_cluster.launch.xml
-
- input_pointcloud [default: /perception/obstacle_segmentation/pointcloud]
- input_map [default: /map/pointcloud_map]
- output_clusters [default: clusters]
- use_low_height_cropbox [default: false]
- voxel_grid_based_euclidean_param_path [default: $(find-pkg-share autoware_euclidean_cluster)/config/voxel_grid_based_euclidean_cluster.param.yaml]
- use_pointcloud_container [default: false]
- pointcloud_container_name [default: pointcloud_container]
Messages
Services
Plugins
Recent questions tagged autoware_euclidean_cluster at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Yukihiro Saito
- Dai Nguyen
- Lei Gu
- Taekjin Lee
Authors
autoware_euclidean_cluster
Purpose
autoware_euclidean_cluster is a package for clustering points into smaller parts to classify objects.
This package has two clustering methods: euclidean_cluster
and voxel_grid_based_euclidean_cluster
.
Inner-workings / Algorithms
euclidean_cluster
pcl::EuclideanClusterExtraction
is applied to points. See official document for details.
voxel_grid_based_euclidean_cluster
- A centroid in each voxel is calculated by
pcl::VoxelGrid
. - The centroids are clustered by
pcl::EuclideanClusterExtraction
. - The input points are clustered based on the clustered centroids.
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
input |
sensor_msgs::msg::PointCloud2 |
input pointcloud |
Output
Name | Type | Description |
---|---|---|
output |
tier4_perception_msgs::msg::DetectedObjectsWithFeature |
cluster pointcloud |
debug/clusters |
sensor_msgs::msg::PointCloud2 |
colored cluster pointcloud for visualization |
Parameters
Core Parameters
euclidean_cluster
Name | Type | Description |
---|---|---|
use_height |
bool | use point.z for clustering |
min_cluster_size |
int | the minimum number of points that a cluster needs to contain in order to be considered valid |
max_cluster_size |
int | the maximum number of points that a cluster needs to contain in order to be considered valid |
tolerance |
float | the spatial cluster tolerance as a measure in the L2 Euclidean space |
voxel_grid_based_euclidean_cluster
Name | Type | Description |
---|---|---|
use_height |
bool | use point.z for clustering |
min_cluster_size |
int | the minimum number of voxels that a cluster needs to contain in order to be considered valid |
max_cluster_size |
int | the maximum number of voxels that a cluster needs to contain in order to be considered valid |
tolerance |
float | the spatial cluster tolerance as a measure in the L2 Euclidean space |
voxel_leaf_size |
float | the voxel leaf size of x and y |
min_points_number_per_voxel |
int | the minimum number of points for a voxel |
min_voxel_cluster_size_for_filtering |
int | The minimum voxel cluster size for a cluster to be checked for being a large cluster. |
max_points_per_voxel_in_large_cluster |
int | The maximum points per voxel allowed in large clusters (used for filtering dense clusters). |
max_voxel_cluster_for_output |
int | The maximum number of voxel clusters to output. If the voxels exceeds this value, the cluster will be skipped. |
Assumptions / Known limits
(Optional) Error detection and handling
(Optional) Performance characterization
(Optional) References/External links
<!– Write links you referred to when you implemented.
Example: [1] {link_to_a_thesis} [2] {link_to_an_issue}
File truncated at 100 lines see the full file
Changelog for package autoware_euclidean_cluster
0.47.0 (2025-08-11)
0.46.0 (2025-06-20)
-
Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base
-
feat(autoware_pointcloud_preprocessor): add diagnostic message (#10579)
- feat: add diag msg
- chore: fix code
- chore: remove outlier count in ring
- chore: move format timestamp to utility
- chore: add paramter to schema
- chore: add parameter for cluster
- chore: clean code
- chore: fix schema
- chore: move diagnostic updater to filter base class
- chore: fix schema
- chore: fix spell error
- chore: set up diagnostic updater
- refactor: utilize autoware_utils diagnostic message
- chore: add publish
- chore: add detail message
- chore: const for time difference
- refactor: structure diagnostics to class
- chore: const reference
- chore: clean logic
- chore: modify function name
- chore: update parameter
- chore: move evaluate status into diagnostic
- chore: fix description for concatenated pointcloud
- chore: timestamp mismatch threshold
- chore: fix diagnostic key
* chore: change function naming ---------
-
feat(autoware_euclidean_cluster): enhance VoxelGridBasedEuclideanCluster with Large Cluster Filtering Parameters (#10618)
* Squashed commit of the following: commit cf3035909ccad94003b2b06f8608b6cb887b221a Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 11:34:32 2025 +0900 debugging impl removed commit 17ee5fc61053e1ff816294a962d9f61dc73cd164 Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 11:24:04 2025 +0900 parameters reading finished commit 6731b5150344515fce11bf5c0128a20145a0b6a8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 09:50:47 2025 +0900 euclidean cluster filter commit 4a65dafec7728209dc4015c513920215d259ddae Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 15:46:07 2025 +0900 Squashed commit of the following: commit 699e657c3997e0c3457d9c1f5fffe1081c4433cc Merge: 4833afd811 e876ece2f8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 11:14:48 2025 +0900 Merge branch 'main' into feat/autoware_perception_rviz_plugin/detected_objects_with_feature_display commit 4833afd8114364625a4a9a82b237e72a09c737be Author: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Fri May 9 02:13:09 2025 +0000 style(pre-commit): autofix commit d7bf97d85c1c97300adf52b7ace62a7c08b78402 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 10:53:33 2025 +0900 fix all problems of rviz commit 91ec2882a505df6996d49a2395f977eae1841314 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 19:22:56 2025 +0900 format fix commit fa1e680ab138253831398c51c415dd3861ea298b Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 17:56:16 2025 +0900 helper to better structure commit 2e4ba008e8c3351fc12f33b79f2fe41c492b1f3c Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 16:26:16 2025 +0900 colorbar visualization optimized commit 25e4b9f4131cf38ce89c9b8b28dee0ed6562a4c3 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 15:42:48 2025 +0900 basic functions all implemented commit 3e3db86a1f3ff266cb00b8b83fa57231ee8e2fb8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 10:31:02 2025 +0900 colorbar commit a6be3ce4a2a3fc48b54ba798af7875d6b071d88b Author: lei.gu <<lei.gu@tier4.jp>> Date: Wed May 7 18:05:45 2025 +0900 colormap fully implemented commit 46762b344541580d3411f61ea78828e5f35d9cfb Author: lei.gu <<lei.gu@tier4.jp>> Date: Wed May 7 17:49:07 2025 +0900 colormap implemented commit e3024f1d2865ca76c0b8e338fa5c2d6bd282dd22 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu Apr 17 10:30:24 2025 +0900 feat(euclidean_cluster): add markers for clusters remove filter profiling rviz detected_objects_with_feature detected objects stage all commits Revert non-visualization changes to state of 43480ef7 commit daef21efb35bc0c4dc2fe9009906199d2b3cf9b1 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 15:36:16 2025 +0900 colorbar
- style(pre-commit): autofix
- corresponding part of VoxelGridBasedEuclideanCluster used in detection by tracker
- style(pre-commit): autofix
- cluster point number diag removed
- add max_num_points_per_cluster
- euclidean cluster diag impl restored
- add comments for the parameters
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Name |
---|
libpcl-all-dev |
Dependant Packages
Launch files
- launch/euclidean_cluster.launch.xml
-
- input_pointcloud [default: /perception/obstacle_segmentation/pointcloud]
- input_map [default: /map/pointcloud_map]
- output_clusters [default: clusters]
- use_low_height_cropbox [default: false]
- euclidean_param_path [default: $(find-pkg-share autoware_euclidean_cluster)/config/euclidean_cluster.param.yaml]
- use_pointcloud_container [default: false]
- pointcloud_container_name [default: pointcloud_container]
- launch/voxel_grid_based_euclidean_cluster.launch.xml
-
- input_pointcloud [default: /perception/obstacle_segmentation/pointcloud]
- input_map [default: /map/pointcloud_map]
- output_clusters [default: clusters]
- use_low_height_cropbox [default: false]
- voxel_grid_based_euclidean_param_path [default: $(find-pkg-share autoware_euclidean_cluster)/config/voxel_grid_based_euclidean_cluster.param.yaml]
- use_pointcloud_container [default: false]
- pointcloud_container_name [default: pointcloud_container]
Messages
Services
Plugins
Recent questions tagged autoware_euclidean_cluster at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Yukihiro Saito
- Dai Nguyen
- Lei Gu
- Taekjin Lee
Authors
autoware_euclidean_cluster
Purpose
autoware_euclidean_cluster is a package for clustering points into smaller parts to classify objects.
This package has two clustering methods: euclidean_cluster
and voxel_grid_based_euclidean_cluster
.
Inner-workings / Algorithms
euclidean_cluster
pcl::EuclideanClusterExtraction
is applied to points. See official document for details.
voxel_grid_based_euclidean_cluster
- A centroid in each voxel is calculated by
pcl::VoxelGrid
. - The centroids are clustered by
pcl::EuclideanClusterExtraction
. - The input points are clustered based on the clustered centroids.
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
input |
sensor_msgs::msg::PointCloud2 |
input pointcloud |
Output
Name | Type | Description |
---|---|---|
output |
tier4_perception_msgs::msg::DetectedObjectsWithFeature |
cluster pointcloud |
debug/clusters |
sensor_msgs::msg::PointCloud2 |
colored cluster pointcloud for visualization |
Parameters
Core Parameters
euclidean_cluster
Name | Type | Description |
---|---|---|
use_height |
bool | use point.z for clustering |
min_cluster_size |
int | the minimum number of points that a cluster needs to contain in order to be considered valid |
max_cluster_size |
int | the maximum number of points that a cluster needs to contain in order to be considered valid |
tolerance |
float | the spatial cluster tolerance as a measure in the L2 Euclidean space |
voxel_grid_based_euclidean_cluster
Name | Type | Description |
---|---|---|
use_height |
bool | use point.z for clustering |
min_cluster_size |
int | the minimum number of voxels that a cluster needs to contain in order to be considered valid |
max_cluster_size |
int | the maximum number of voxels that a cluster needs to contain in order to be considered valid |
tolerance |
float | the spatial cluster tolerance as a measure in the L2 Euclidean space |
voxel_leaf_size |
float | the voxel leaf size of x and y |
min_points_number_per_voxel |
int | the minimum number of points for a voxel |
min_voxel_cluster_size_for_filtering |
int | The minimum voxel cluster size for a cluster to be checked for being a large cluster. |
max_points_per_voxel_in_large_cluster |
int | The maximum points per voxel allowed in large clusters (used for filtering dense clusters). |
max_voxel_cluster_for_output |
int | The maximum number of voxel clusters to output. If the voxels exceeds this value, the cluster will be skipped. |
Assumptions / Known limits
(Optional) Error detection and handling
(Optional) Performance characterization
(Optional) References/External links
<!– Write links you referred to when you implemented.
Example: [1] {link_to_a_thesis} [2] {link_to_an_issue}
File truncated at 100 lines see the full file
Changelog for package autoware_euclidean_cluster
0.47.0 (2025-08-11)
0.46.0 (2025-06-20)
-
Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base
-
feat(autoware_pointcloud_preprocessor): add diagnostic message (#10579)
- feat: add diag msg
- chore: fix code
- chore: remove outlier count in ring
- chore: move format timestamp to utility
- chore: add paramter to schema
- chore: add parameter for cluster
- chore: clean code
- chore: fix schema
- chore: move diagnostic updater to filter base class
- chore: fix schema
- chore: fix spell error
- chore: set up diagnostic updater
- refactor: utilize autoware_utils diagnostic message
- chore: add publish
- chore: add detail message
- chore: const for time difference
- refactor: structure diagnostics to class
- chore: const reference
- chore: clean logic
- chore: modify function name
- chore: update parameter
- chore: move evaluate status into diagnostic
- chore: fix description for concatenated pointcloud
- chore: timestamp mismatch threshold
- chore: fix diagnostic key
* chore: change function naming ---------
-
feat(autoware_euclidean_cluster): enhance VoxelGridBasedEuclideanCluster with Large Cluster Filtering Parameters (#10618)
* Squashed commit of the following: commit cf3035909ccad94003b2b06f8608b6cb887b221a Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 11:34:32 2025 +0900 debugging impl removed commit 17ee5fc61053e1ff816294a962d9f61dc73cd164 Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 11:24:04 2025 +0900 parameters reading finished commit 6731b5150344515fce11bf5c0128a20145a0b6a8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 09:50:47 2025 +0900 euclidean cluster filter commit 4a65dafec7728209dc4015c513920215d259ddae Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 15:46:07 2025 +0900 Squashed commit of the following: commit 699e657c3997e0c3457d9c1f5fffe1081c4433cc Merge: 4833afd811 e876ece2f8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 11:14:48 2025 +0900 Merge branch 'main' into feat/autoware_perception_rviz_plugin/detected_objects_with_feature_display commit 4833afd8114364625a4a9a82b237e72a09c737be Author: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Fri May 9 02:13:09 2025 +0000 style(pre-commit): autofix commit d7bf97d85c1c97300adf52b7ace62a7c08b78402 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 10:53:33 2025 +0900 fix all problems of rviz commit 91ec2882a505df6996d49a2395f977eae1841314 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 19:22:56 2025 +0900 format fix commit fa1e680ab138253831398c51c415dd3861ea298b Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 17:56:16 2025 +0900 helper to better structure commit 2e4ba008e8c3351fc12f33b79f2fe41c492b1f3c Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 16:26:16 2025 +0900 colorbar visualization optimized commit 25e4b9f4131cf38ce89c9b8b28dee0ed6562a4c3 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 15:42:48 2025 +0900 basic functions all implemented commit 3e3db86a1f3ff266cb00b8b83fa57231ee8e2fb8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 10:31:02 2025 +0900 colorbar commit a6be3ce4a2a3fc48b54ba798af7875d6b071d88b Author: lei.gu <<lei.gu@tier4.jp>> Date: Wed May 7 18:05:45 2025 +0900 colormap fully implemented commit 46762b344541580d3411f61ea78828e5f35d9cfb Author: lei.gu <<lei.gu@tier4.jp>> Date: Wed May 7 17:49:07 2025 +0900 colormap implemented commit e3024f1d2865ca76c0b8e338fa5c2d6bd282dd22 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu Apr 17 10:30:24 2025 +0900 feat(euclidean_cluster): add markers for clusters remove filter profiling rviz detected_objects_with_feature detected objects stage all commits Revert non-visualization changes to state of 43480ef7 commit daef21efb35bc0c4dc2fe9009906199d2b3cf9b1 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 15:36:16 2025 +0900 colorbar
- style(pre-commit): autofix
- corresponding part of VoxelGridBasedEuclideanCluster used in detection by tracker
- style(pre-commit): autofix
- cluster point number diag removed
- add max_num_points_per_cluster
- euclidean cluster diag impl restored
- add comments for the parameters
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Name |
---|
libpcl-all-dev |
Dependant Packages
Launch files
- launch/euclidean_cluster.launch.xml
-
- input_pointcloud [default: /perception/obstacle_segmentation/pointcloud]
- input_map [default: /map/pointcloud_map]
- output_clusters [default: clusters]
- use_low_height_cropbox [default: false]
- euclidean_param_path [default: $(find-pkg-share autoware_euclidean_cluster)/config/euclidean_cluster.param.yaml]
- use_pointcloud_container [default: false]
- pointcloud_container_name [default: pointcloud_container]
- launch/voxel_grid_based_euclidean_cluster.launch.xml
-
- input_pointcloud [default: /perception/obstacle_segmentation/pointcloud]
- input_map [default: /map/pointcloud_map]
- output_clusters [default: clusters]
- use_low_height_cropbox [default: false]
- voxel_grid_based_euclidean_param_path [default: $(find-pkg-share autoware_euclidean_cluster)/config/voxel_grid_based_euclidean_cluster.param.yaml]
- use_pointcloud_container [default: false]
- pointcloud_container_name [default: pointcloud_container]
Messages
Services
Plugins
Recent questions tagged autoware_euclidean_cluster at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Yukihiro Saito
- Dai Nguyen
- Lei Gu
- Taekjin Lee
Authors
autoware_euclidean_cluster
Purpose
autoware_euclidean_cluster is a package for clustering points into smaller parts to classify objects.
This package has two clustering methods: euclidean_cluster
and voxel_grid_based_euclidean_cluster
.
Inner-workings / Algorithms
euclidean_cluster
pcl::EuclideanClusterExtraction
is applied to points. See official document for details.
voxel_grid_based_euclidean_cluster
- A centroid in each voxel is calculated by
pcl::VoxelGrid
. - The centroids are clustered by
pcl::EuclideanClusterExtraction
. - The input points are clustered based on the clustered centroids.
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
input |
sensor_msgs::msg::PointCloud2 |
input pointcloud |
Output
Name | Type | Description |
---|---|---|
output |
tier4_perception_msgs::msg::DetectedObjectsWithFeature |
cluster pointcloud |
debug/clusters |
sensor_msgs::msg::PointCloud2 |
colored cluster pointcloud for visualization |
Parameters
Core Parameters
euclidean_cluster
Name | Type | Description |
---|---|---|
use_height |
bool | use point.z for clustering |
min_cluster_size |
int | the minimum number of points that a cluster needs to contain in order to be considered valid |
max_cluster_size |
int | the maximum number of points that a cluster needs to contain in order to be considered valid |
tolerance |
float | the spatial cluster tolerance as a measure in the L2 Euclidean space |
voxel_grid_based_euclidean_cluster
Name | Type | Description |
---|---|---|
use_height |
bool | use point.z for clustering |
min_cluster_size |
int | the minimum number of voxels that a cluster needs to contain in order to be considered valid |
max_cluster_size |
int | the maximum number of voxels that a cluster needs to contain in order to be considered valid |
tolerance |
float | the spatial cluster tolerance as a measure in the L2 Euclidean space |
voxel_leaf_size |
float | the voxel leaf size of x and y |
min_points_number_per_voxel |
int | the minimum number of points for a voxel |
min_voxel_cluster_size_for_filtering |
int | The minimum voxel cluster size for a cluster to be checked for being a large cluster. |
max_points_per_voxel_in_large_cluster |
int | The maximum points per voxel allowed in large clusters (used for filtering dense clusters). |
max_voxel_cluster_for_output |
int | The maximum number of voxel clusters to output. If the voxels exceeds this value, the cluster will be skipped. |
Assumptions / Known limits
(Optional) Error detection and handling
(Optional) Performance characterization
(Optional) References/External links
<!– Write links you referred to when you implemented.
Example: [1] {link_to_a_thesis} [2] {link_to_an_issue}
File truncated at 100 lines see the full file
Changelog for package autoware_euclidean_cluster
0.47.0 (2025-08-11)
0.46.0 (2025-06-20)
-
Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base
-
feat(autoware_pointcloud_preprocessor): add diagnostic message (#10579)
- feat: add diag msg
- chore: fix code
- chore: remove outlier count in ring
- chore: move format timestamp to utility
- chore: add paramter to schema
- chore: add parameter for cluster
- chore: clean code
- chore: fix schema
- chore: move diagnostic updater to filter base class
- chore: fix schema
- chore: fix spell error
- chore: set up diagnostic updater
- refactor: utilize autoware_utils diagnostic message
- chore: add publish
- chore: add detail message
- chore: const for time difference
- refactor: structure diagnostics to class
- chore: const reference
- chore: clean logic
- chore: modify function name
- chore: update parameter
- chore: move evaluate status into diagnostic
- chore: fix description for concatenated pointcloud
- chore: timestamp mismatch threshold
- chore: fix diagnostic key
* chore: change function naming ---------
-
feat(autoware_euclidean_cluster): enhance VoxelGridBasedEuclideanCluster with Large Cluster Filtering Parameters (#10618)
* Squashed commit of the following: commit cf3035909ccad94003b2b06f8608b6cb887b221a Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 11:34:32 2025 +0900 debugging impl removed commit 17ee5fc61053e1ff816294a962d9f61dc73cd164 Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 11:24:04 2025 +0900 parameters reading finished commit 6731b5150344515fce11bf5c0128a20145a0b6a8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 09:50:47 2025 +0900 euclidean cluster filter commit 4a65dafec7728209dc4015c513920215d259ddae Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 15:46:07 2025 +0900 Squashed commit of the following: commit 699e657c3997e0c3457d9c1f5fffe1081c4433cc Merge: 4833afd811 e876ece2f8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 11:14:48 2025 +0900 Merge branch 'main' into feat/autoware_perception_rviz_plugin/detected_objects_with_feature_display commit 4833afd8114364625a4a9a82b237e72a09c737be Author: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Fri May 9 02:13:09 2025 +0000 style(pre-commit): autofix commit d7bf97d85c1c97300adf52b7ace62a7c08b78402 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 10:53:33 2025 +0900 fix all problems of rviz commit 91ec2882a505df6996d49a2395f977eae1841314 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 19:22:56 2025 +0900 format fix commit fa1e680ab138253831398c51c415dd3861ea298b Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 17:56:16 2025 +0900 helper to better structure commit 2e4ba008e8c3351fc12f33b79f2fe41c492b1f3c Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 16:26:16 2025 +0900 colorbar visualization optimized commit 25e4b9f4131cf38ce89c9b8b28dee0ed6562a4c3 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 15:42:48 2025 +0900 basic functions all implemented commit 3e3db86a1f3ff266cb00b8b83fa57231ee8e2fb8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 10:31:02 2025 +0900 colorbar commit a6be3ce4a2a3fc48b54ba798af7875d6b071d88b Author: lei.gu <<lei.gu@tier4.jp>> Date: Wed May 7 18:05:45 2025 +0900 colormap fully implemented commit 46762b344541580d3411f61ea78828e5f35d9cfb Author: lei.gu <<lei.gu@tier4.jp>> Date: Wed May 7 17:49:07 2025 +0900 colormap implemented commit e3024f1d2865ca76c0b8e338fa5c2d6bd282dd22 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu Apr 17 10:30:24 2025 +0900 feat(euclidean_cluster): add markers for clusters remove filter profiling rviz detected_objects_with_feature detected objects stage all commits Revert non-visualization changes to state of 43480ef7 commit daef21efb35bc0c4dc2fe9009906199d2b3cf9b1 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 15:36:16 2025 +0900 colorbar
- style(pre-commit): autofix
- corresponding part of VoxelGridBasedEuclideanCluster used in detection by tracker
- style(pre-commit): autofix
- cluster point number diag removed
- add max_num_points_per_cluster
- euclidean cluster diag impl restored
- add comments for the parameters
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Name |
---|
libpcl-all-dev |
Dependant Packages
Launch files
- launch/euclidean_cluster.launch.xml
-
- input_pointcloud [default: /perception/obstacle_segmentation/pointcloud]
- input_map [default: /map/pointcloud_map]
- output_clusters [default: clusters]
- use_low_height_cropbox [default: false]
- euclidean_param_path [default: $(find-pkg-share autoware_euclidean_cluster)/config/euclidean_cluster.param.yaml]
- use_pointcloud_container [default: false]
- pointcloud_container_name [default: pointcloud_container]
- launch/voxel_grid_based_euclidean_cluster.launch.xml
-
- input_pointcloud [default: /perception/obstacle_segmentation/pointcloud]
- input_map [default: /map/pointcloud_map]
- output_clusters [default: clusters]
- use_low_height_cropbox [default: false]
- voxel_grid_based_euclidean_param_path [default: $(find-pkg-share autoware_euclidean_cluster)/config/voxel_grid_based_euclidean_cluster.param.yaml]
- use_pointcloud_container [default: false]
- pointcloud_container_name [default: pointcloud_container]
Messages
Services
Plugins
Recent questions tagged autoware_euclidean_cluster at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Yukihiro Saito
- Dai Nguyen
- Lei Gu
- Taekjin Lee
Authors
autoware_euclidean_cluster
Purpose
autoware_euclidean_cluster is a package for clustering points into smaller parts to classify objects.
This package has two clustering methods: euclidean_cluster
and voxel_grid_based_euclidean_cluster
.
Inner-workings / Algorithms
euclidean_cluster
pcl::EuclideanClusterExtraction
is applied to points. See official document for details.
voxel_grid_based_euclidean_cluster
- A centroid in each voxel is calculated by
pcl::VoxelGrid
. - The centroids are clustered by
pcl::EuclideanClusterExtraction
. - The input points are clustered based on the clustered centroids.
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
input |
sensor_msgs::msg::PointCloud2 |
input pointcloud |
Output
Name | Type | Description |
---|---|---|
output |
tier4_perception_msgs::msg::DetectedObjectsWithFeature |
cluster pointcloud |
debug/clusters |
sensor_msgs::msg::PointCloud2 |
colored cluster pointcloud for visualization |
Parameters
Core Parameters
euclidean_cluster
Name | Type | Description |
---|---|---|
use_height |
bool | use point.z for clustering |
min_cluster_size |
int | the minimum number of points that a cluster needs to contain in order to be considered valid |
max_cluster_size |
int | the maximum number of points that a cluster needs to contain in order to be considered valid |
tolerance |
float | the spatial cluster tolerance as a measure in the L2 Euclidean space |
voxel_grid_based_euclidean_cluster
Name | Type | Description |
---|---|---|
use_height |
bool | use point.z for clustering |
min_cluster_size |
int | the minimum number of voxels that a cluster needs to contain in order to be considered valid |
max_cluster_size |
int | the maximum number of voxels that a cluster needs to contain in order to be considered valid |
tolerance |
float | the spatial cluster tolerance as a measure in the L2 Euclidean space |
voxel_leaf_size |
float | the voxel leaf size of x and y |
min_points_number_per_voxel |
int | the minimum number of points for a voxel |
min_voxel_cluster_size_for_filtering |
int | The minimum voxel cluster size for a cluster to be checked for being a large cluster. |
max_points_per_voxel_in_large_cluster |
int | The maximum points per voxel allowed in large clusters (used for filtering dense clusters). |
max_voxel_cluster_for_output |
int | The maximum number of voxel clusters to output. If the voxels exceeds this value, the cluster will be skipped. |
Assumptions / Known limits
(Optional) Error detection and handling
(Optional) Performance characterization
(Optional) References/External links
<!– Write links you referred to when you implemented.
Example: [1] {link_to_a_thesis} [2] {link_to_an_issue}
File truncated at 100 lines see the full file
Changelog for package autoware_euclidean_cluster
0.47.0 (2025-08-11)
0.46.0 (2025-06-20)
-
Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base
-
feat(autoware_pointcloud_preprocessor): add diagnostic message (#10579)
- feat: add diag msg
- chore: fix code
- chore: remove outlier count in ring
- chore: move format timestamp to utility
- chore: add paramter to schema
- chore: add parameter for cluster
- chore: clean code
- chore: fix schema
- chore: move diagnostic updater to filter base class
- chore: fix schema
- chore: fix spell error
- chore: set up diagnostic updater
- refactor: utilize autoware_utils diagnostic message
- chore: add publish
- chore: add detail message
- chore: const for time difference
- refactor: structure diagnostics to class
- chore: const reference
- chore: clean logic
- chore: modify function name
- chore: update parameter
- chore: move evaluate status into diagnostic
- chore: fix description for concatenated pointcloud
- chore: timestamp mismatch threshold
- chore: fix diagnostic key
* chore: change function naming ---------
-
feat(autoware_euclidean_cluster): enhance VoxelGridBasedEuclideanCluster with Large Cluster Filtering Parameters (#10618)
* Squashed commit of the following: commit cf3035909ccad94003b2b06f8608b6cb887b221a Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 11:34:32 2025 +0900 debugging impl removed commit 17ee5fc61053e1ff816294a962d9f61dc73cd164 Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 11:24:04 2025 +0900 parameters reading finished commit 6731b5150344515fce11bf5c0128a20145a0b6a8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 09:50:47 2025 +0900 euclidean cluster filter commit 4a65dafec7728209dc4015c513920215d259ddae Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 15:46:07 2025 +0900 Squashed commit of the following: commit 699e657c3997e0c3457d9c1f5fffe1081c4433cc Merge: 4833afd811 e876ece2f8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 11:14:48 2025 +0900 Merge branch 'main' into feat/autoware_perception_rviz_plugin/detected_objects_with_feature_display commit 4833afd8114364625a4a9a82b237e72a09c737be Author: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Fri May 9 02:13:09 2025 +0000 style(pre-commit): autofix commit d7bf97d85c1c97300adf52b7ace62a7c08b78402 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 10:53:33 2025 +0900 fix all problems of rviz commit 91ec2882a505df6996d49a2395f977eae1841314 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 19:22:56 2025 +0900 format fix commit fa1e680ab138253831398c51c415dd3861ea298b Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 17:56:16 2025 +0900 helper to better structure commit 2e4ba008e8c3351fc12f33b79f2fe41c492b1f3c Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 16:26:16 2025 +0900 colorbar visualization optimized commit 25e4b9f4131cf38ce89c9b8b28dee0ed6562a4c3 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 15:42:48 2025 +0900 basic functions all implemented commit 3e3db86a1f3ff266cb00b8b83fa57231ee8e2fb8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 10:31:02 2025 +0900 colorbar commit a6be3ce4a2a3fc48b54ba798af7875d6b071d88b Author: lei.gu <<lei.gu@tier4.jp>> Date: Wed May 7 18:05:45 2025 +0900 colormap fully implemented commit 46762b344541580d3411f61ea78828e5f35d9cfb Author: lei.gu <<lei.gu@tier4.jp>> Date: Wed May 7 17:49:07 2025 +0900 colormap implemented commit e3024f1d2865ca76c0b8e338fa5c2d6bd282dd22 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu Apr 17 10:30:24 2025 +0900 feat(euclidean_cluster): add markers for clusters remove filter profiling rviz detected_objects_with_feature detected objects stage all commits Revert non-visualization changes to state of 43480ef7 commit daef21efb35bc0c4dc2fe9009906199d2b3cf9b1 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 15:36:16 2025 +0900 colorbar
- style(pre-commit): autofix
- corresponding part of VoxelGridBasedEuclideanCluster used in detection by tracker
- style(pre-commit): autofix
- cluster point number diag removed
- add max_num_points_per_cluster
- euclidean cluster diag impl restored
- add comments for the parameters
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Name |
---|
libpcl-all-dev |
Dependant Packages
Launch files
- launch/euclidean_cluster.launch.xml
-
- input_pointcloud [default: /perception/obstacle_segmentation/pointcloud]
- input_map [default: /map/pointcloud_map]
- output_clusters [default: clusters]
- use_low_height_cropbox [default: false]
- euclidean_param_path [default: $(find-pkg-share autoware_euclidean_cluster)/config/euclidean_cluster.param.yaml]
- use_pointcloud_container [default: false]
- pointcloud_container_name [default: pointcloud_container]
- launch/voxel_grid_based_euclidean_cluster.launch.xml
-
- input_pointcloud [default: /perception/obstacle_segmentation/pointcloud]
- input_map [default: /map/pointcloud_map]
- output_clusters [default: clusters]
- use_low_height_cropbox [default: false]
- voxel_grid_based_euclidean_param_path [default: $(find-pkg-share autoware_euclidean_cluster)/config/voxel_grid_based_euclidean_cluster.param.yaml]
- use_pointcloud_container [default: false]
- pointcloud_container_name [default: pointcloud_container]
Messages
Services
Plugins
Recent questions tagged autoware_euclidean_cluster at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Yukihiro Saito
- Dai Nguyen
- Lei Gu
- Taekjin Lee
Authors
autoware_euclidean_cluster
Purpose
autoware_euclidean_cluster is a package for clustering points into smaller parts to classify objects.
This package has two clustering methods: euclidean_cluster
and voxel_grid_based_euclidean_cluster
.
Inner-workings / Algorithms
euclidean_cluster
pcl::EuclideanClusterExtraction
is applied to points. See official document for details.
voxel_grid_based_euclidean_cluster
- A centroid in each voxel is calculated by
pcl::VoxelGrid
. - The centroids are clustered by
pcl::EuclideanClusterExtraction
. - The input points are clustered based on the clustered centroids.
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
input |
sensor_msgs::msg::PointCloud2 |
input pointcloud |
Output
Name | Type | Description |
---|---|---|
output |
tier4_perception_msgs::msg::DetectedObjectsWithFeature |
cluster pointcloud |
debug/clusters |
sensor_msgs::msg::PointCloud2 |
colored cluster pointcloud for visualization |
Parameters
Core Parameters
euclidean_cluster
Name | Type | Description |
---|---|---|
use_height |
bool | use point.z for clustering |
min_cluster_size |
int | the minimum number of points that a cluster needs to contain in order to be considered valid |
max_cluster_size |
int | the maximum number of points that a cluster needs to contain in order to be considered valid |
tolerance |
float | the spatial cluster tolerance as a measure in the L2 Euclidean space |
voxel_grid_based_euclidean_cluster
Name | Type | Description |
---|---|---|
use_height |
bool | use point.z for clustering |
min_cluster_size |
int | the minimum number of voxels that a cluster needs to contain in order to be considered valid |
max_cluster_size |
int | the maximum number of voxels that a cluster needs to contain in order to be considered valid |
tolerance |
float | the spatial cluster tolerance as a measure in the L2 Euclidean space |
voxel_leaf_size |
float | the voxel leaf size of x and y |
min_points_number_per_voxel |
int | the minimum number of points for a voxel |
min_voxel_cluster_size_for_filtering |
int | The minimum voxel cluster size for a cluster to be checked for being a large cluster. |
max_points_per_voxel_in_large_cluster |
int | The maximum points per voxel allowed in large clusters (used for filtering dense clusters). |
max_voxel_cluster_for_output |
int | The maximum number of voxel clusters to output. If the voxels exceeds this value, the cluster will be skipped. |
Assumptions / Known limits
(Optional) Error detection and handling
(Optional) Performance characterization
(Optional) References/External links
<!– Write links you referred to when you implemented.
Example: [1] {link_to_a_thesis} [2] {link_to_an_issue}
File truncated at 100 lines see the full file
Changelog for package autoware_euclidean_cluster
0.47.0 (2025-08-11)
0.46.0 (2025-06-20)
-
Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base
-
feat(autoware_pointcloud_preprocessor): add diagnostic message (#10579)
- feat: add diag msg
- chore: fix code
- chore: remove outlier count in ring
- chore: move format timestamp to utility
- chore: add paramter to schema
- chore: add parameter for cluster
- chore: clean code
- chore: fix schema
- chore: move diagnostic updater to filter base class
- chore: fix schema
- chore: fix spell error
- chore: set up diagnostic updater
- refactor: utilize autoware_utils diagnostic message
- chore: add publish
- chore: add detail message
- chore: const for time difference
- refactor: structure diagnostics to class
- chore: const reference
- chore: clean logic
- chore: modify function name
- chore: update parameter
- chore: move evaluate status into diagnostic
- chore: fix description for concatenated pointcloud
- chore: timestamp mismatch threshold
- chore: fix diagnostic key
* chore: change function naming ---------
-
feat(autoware_euclidean_cluster): enhance VoxelGridBasedEuclideanCluster with Large Cluster Filtering Parameters (#10618)
* Squashed commit of the following: commit cf3035909ccad94003b2b06f8608b6cb887b221a Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 11:34:32 2025 +0900 debugging impl removed commit 17ee5fc61053e1ff816294a962d9f61dc73cd164 Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 11:24:04 2025 +0900 parameters reading finished commit 6731b5150344515fce11bf5c0128a20145a0b6a8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Tue May 13 09:50:47 2025 +0900 euclidean cluster filter commit 4a65dafec7728209dc4015c513920215d259ddae Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 15:46:07 2025 +0900 Squashed commit of the following: commit 699e657c3997e0c3457d9c1f5fffe1081c4433cc Merge: 4833afd811 e876ece2f8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 11:14:48 2025 +0900 Merge branch 'main' into feat/autoware_perception_rviz_plugin/detected_objects_with_feature_display commit 4833afd8114364625a4a9a82b237e72a09c737be Author: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Fri May 9 02:13:09 2025 +0000 style(pre-commit): autofix commit d7bf97d85c1c97300adf52b7ace62a7c08b78402 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 10:53:33 2025 +0900 fix all problems of rviz commit 91ec2882a505df6996d49a2395f977eae1841314 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 19:22:56 2025 +0900 format fix commit fa1e680ab138253831398c51c415dd3861ea298b Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 17:56:16 2025 +0900 helper to better structure commit 2e4ba008e8c3351fc12f33b79f2fe41c492b1f3c Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 16:26:16 2025 +0900 colorbar visualization optimized commit 25e4b9f4131cf38ce89c9b8b28dee0ed6562a4c3 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 15:42:48 2025 +0900 basic functions all implemented commit 3e3db86a1f3ff266cb00b8b83fa57231ee8e2fb8 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu May 8 10:31:02 2025 +0900 colorbar commit a6be3ce4a2a3fc48b54ba798af7875d6b071d88b Author: lei.gu <<lei.gu@tier4.jp>> Date: Wed May 7 18:05:45 2025 +0900 colormap fully implemented commit 46762b344541580d3411f61ea78828e5f35d9cfb Author: lei.gu <<lei.gu@tier4.jp>> Date: Wed May 7 17:49:07 2025 +0900 colormap implemented commit e3024f1d2865ca76c0b8e338fa5c2d6bd282dd22 Author: lei.gu <<lei.gu@tier4.jp>> Date: Thu Apr 17 10:30:24 2025 +0900 feat(euclidean_cluster): add markers for clusters remove filter profiling rviz detected_objects_with_feature detected objects stage all commits Revert non-visualization changes to state of 43480ef7 commit daef21efb35bc0c4dc2fe9009906199d2b3cf9b1 Author: lei.gu <<lei.gu@tier4.jp>> Date: Fri May 9 15:36:16 2025 +0900 colorbar
- style(pre-commit): autofix
- corresponding part of VoxelGridBasedEuclideanCluster used in detection by tracker
- style(pre-commit): autofix
- cluster point number diag removed
- add max_num_points_per_cluster
- euclidean cluster diag impl restored
- add comments for the parameters
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Name |
---|
libpcl-all-dev |
Dependant Packages
Launch files
- launch/euclidean_cluster.launch.xml
-
- input_pointcloud [default: /perception/obstacle_segmentation/pointcloud]
- input_map [default: /map/pointcloud_map]
- output_clusters [default: clusters]
- use_low_height_cropbox [default: false]
- euclidean_param_path [default: $(find-pkg-share autoware_euclidean_cluster)/config/euclidean_cluster.param.yaml]
- use_pointcloud_container [default: false]
- pointcloud_container_name [default: pointcloud_container]
- launch/voxel_grid_based_euclidean_cluster.launch.xml
-
- input_pointcloud [default: /perception/obstacle_segmentation/pointcloud]
- input_map [default: /map/pointcloud_map]
- output_clusters [default: clusters]
- use_low_height_cropbox [default: false]
- voxel_grid_based_euclidean_param_path [default: $(find-pkg-share autoware_euclidean_cluster)/config/voxel_grid_based_euclidean_cluster.param.yaml]
- use_pointcloud_container [default: false]
- pointcloud_container_name [default: pointcloud_container]