No version for distro humble showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_lidar_centerpoint package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

The autoware_lidar_centerpoint package

Additional Links

No additional links.

Maintainers

  • Kenzo Lobos-Tsunekawa
  • Amadeusz Szymko
  • Kotaro Uetake
  • Masato Saeki
  • Taekjin Lee
  • Kok Seang Tan

Authors

No additional authors.

autoware_lidar_centerpoint

Purpose

autoware_lidar_centerpoint is a package for detecting dynamic 3D objects.

Inner-workings / Algorithms

In this implementation, CenterPoint [1] uses a PointPillars-based [2] network to inference with TensorRT.

We trained the models using https://github.com/open-mmlab/mmdetection3d.

Inputs / Outputs

Input

Name Type Description
~/input/pointcloud sensor_msgs::msg::PointCloud2 input pointcloud

Output

Name Type Description
~/output/objects autoware_perception_msgs::msg::DetectedObjects detected objects
debug/cyclic_time_ms autoware_internal_debug_msgs::msg::Float64Stamped cyclic time (msg)
debug/processing_time_ms autoware_internal_debug_msgs::msg::Float64Stamped processing time (ms)

Parameters

ML Model Parameters

Note that these parameters are associated with ONNX file, predefined during the training phase. Be careful to change ONNX file as well when changing this parameter. Also, whenever you update the ONNX file, do NOT forget to check these values.

Name Type Default Value Description
model_params.class_names list[string] [“CAR”, “TRUCK”, “BUS”, “BICYCLE”, “PEDESTRIAN”] list of class names for model outputs
model_params.point_feature_size int 4 number of features per point in the point cloud
model_params.max_voxel_size int 40000 maximum number of voxels
model_params.point_cloud_range list[double] [-76.8, -76.8, -4.0, 76.8, 76.8, 6.0] detection range [min_x, min_y, min_z, max_x, max_y, max_z] [m]
model_params.voxel_size list[double] [0.32, 0.32, 10.0] size of each voxel [x, y, z] [m]
model_params.downsample_factor int 1 downsample factor for coordinates
model_params.encoder_in_feature_size int 9 number of input features to the encoder
model_params.has_variance bool false true if the model outputs pose variance as well as pose for each bbox
model_params.has_twist bool false true if the model outputs velocity as well as pose for each bbox

Core Parameters

Name Type Default Value Description
encoder_onnx_path string "" path to VoxelFeatureEncoder ONNX file
encoder_engine_path string "" path to VoxelFeatureEncoder TensorRT Engine file
head_onnx_path string "" path to DetectionHead ONNX file
head_engine_path string "" path to DetectionHead TensorRT Engine file
build_only bool false shutdown the node after TensorRT engine file is built
trt_precision string fp16 TensorRT inference precision: fp32 or fp16
post_process_params.score_thresholds list[double] [0.35, 0.35, 0.35, 0.35, 0.35] detected objects with score less than their label threshold are ignored.
post_process_params.yaw_norm_thresholds list[double] [0.3, 0.3, 0.3, 0.3, 0.0] An array of distance threshold values of norm of yaw [rad].
post_process_params.iou_nms_search_distance_2d double - If two objects are farther than the value, NMS isn’t applied.
post_process_params.iou_nms_threshold double - IoU threshold for the IoU-based Non Maximum Suppression
post_process_params.has_twist boolean false Indicates whether the model outputs twist value.
densification_params.world_frame_id string map the world frame id to fuse multi-frame pointcloud
densification_params.num_past_frames int 1 the number of past frames to fuse with the current frame

The build_only option

The autoware_lidar_centerpoint node has build_only option to build the TensorRT engine file from the ONNX file. Although it is preferred to move all the ROS parameters in .param.yaml file in Autoware Universe, the build_only option is not moved to the .param.yaml file for now, because it may be used as a flag to execute the build as a pre-task. You can execute with the following command:

ros2 launch autoware_lidar_centerpoint lidar_centerpoint.launch.xml model_name:=centerpoint_tiny model_path:=/home/autoware/autoware_data/lidar_centerpoint model_param_path:=$(ros2 pkg prefix autoware_lidar_centerpoint --share)/config/centerpoint_tiny.param.yaml build_only:=true

Assumptions / Known limits

  • The object.existence_probability is stored the value of classification confidence of a DNN, not probability.

Trained Models

You can download the onnx format of trained models by clicking on the links below.

Centerpoint was trained in nuScenes (~28k lidar frames) [8] and TIER IV’s internal database (~11k lidar frames) for 60 epochs. Centerpoint tiny was trained in Argoverse 2 (~110k lidar frames) [9] and TIER IV’s internal database (~11k lidar frames) for 20 epochs.

Training CenterPoint Model and Deploying to the Autoware

Overview

This guide provides instructions on training a CenterPoint model using the mmdetection3d repository and seamlessly deploying it within Autoware.

Installation

Install prerequisites

Step 1. Download and install Miniconda from the official website.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_lidar_centerpoint

0.47.0 (2025-08-11)

  • feat(autoware_lidar_centerpoint): add class-wise confidence thresholds to CenterPoint (#10881)

    • Add PreprocessCuda to CenterPoint
    • style(pre-commit): autofix
    • style(pre-commit): autofix
    • Add intensity preprocessing
    • style(pre-commit): autofix
    • Fix config_.point_feature_size_ typo
    • style(pre-commit): autofix
    • Fix point typo
    • style(pre-commit): autofix
    • Change score_threshold to score_thresholds
    • Use <autoware/cuda_utils/cuda_utils.hpp> for clear_async
    • Rename pre_ptr_ to pre_proc_ptr_
    • Remove unused getCacheSize() and getIdx
    • Use template in generateVoxels_random_kernel instead
    • style(pre-commit): autofix
    • Remove references in generateVoxels_random_kernel
    • Remove references in generateVoxels_random_kernel
    • style(pre-commit): autofix
    • Remove generateIntensityFeatures_kernel and add the case of 11 to ENCODER_IN_FEATURE_SIZE for generateFeatures_kernel
    • style(pre-commit): autofix
    • Add class-wise confidence thresholds to CenterPoint
    • style(pre-commit): autofix
    • Remov empty line changes
    • Update score_threshold to score_thresholds in REAMME
    • style(pre-commit): autofix
    • Change score_thresholds from pass by value to pass by reference
    • style(pre-commit): autofix
    • Add information about class names in scehema
    • Change vector<double> to vector<float>
    • Remove thrust and add stream_ to PostProcessCUDA
    • style(pre-commit): autofix
    • Fix incorrect initialization of score_thresholds_ vector
    • Fix postprocess CudaMemCpy error
    • Fix postprocess score_thresholds_d_ptr_ typing error
    • Fix score_thresholds typing in node.cpp
    • Static casting params.score_thresholds vector
    • style(pre-commit): autofix
    • Update perception/autoware_lidar_centerpoint/src/node.cpp
    • Update perception/autoware_lidar_centerpoint/include/autoware/lidar_centerpoint/centerpoint_config.hpp
    • Update centerpoint_config.hpp
    • Update node.cpp
    • Update score_thresholds_ to double since ros2 supports only double instead of float
    • style(pre-commit): autofix
    • Fix cuda memory and revert double score_thresholds_ to float score_thresholds_

    * style(pre-commit): autofix ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Taekjin LEE <<technolojin@gmail.com>>

  • feat(autoware_lidar_centerpoint): add Intensity support to CenterPoint (#10854)

    • Add PreprocessCuda to CenterPoint
    • style(pre-commit): autofix
    • style(pre-commit): autofix
    • Add intensity preprocessing
    • style(pre-commit): autofix
    • Fix config_.point_feature_size_ typo
    • style(pre-commit): autofix
    • Fix point typo
    • style(pre-commit): autofix
    • Use <autoware/cuda_utils/cuda_utils.hpp> for clear_async
    • Rename pre_ptr_ to pre_proc_ptr_
    • Remove unused getCacheSize() and getIdx
    • Use template in generateVoxels_random_kernel instead
    • style(pre-commit): autofix
    • Remove references in generateVoxels_random_kernel
    • Remove references in generateVoxels_random_kernel
    • style(pre-commit): autofix
    • Remove generateIntensityFeatures_kernel and add the case of 11 to ENCODER_IN_FEATURE_SIZE for generateFeatures_kernel
    • style(pre-commit): autofix

    * Remov empty line changes ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • Contributors: Kok Seang Tan

0.46.0 (2025-06-20)

  • Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base

  • chore(perception): delete maintainer name (#10816)

File truncated at 100 lines see the full file

Launch files

  • launch/lidar_centerpoint.launch.xml
      • input/pointcloud [default: /sensing/lidar/pointcloud]
      • output/objects [default: objects]
      • data_path [default: $(env HOME)/autoware_data]
      • node_name [default: lidar_centerpoint]
      • model_name [default: centerpoint_tiny]
      • model_path [default: $(var data_path)/$(var node_name)]
      • model_param_path [default: $(find-pkg-share autoware_lidar_centerpoint)/config/$(var model_name).param.yaml]
      • ml_package_param_path [default: $(var model_path)/$(var model_name)_ml_package.param.yaml]
      • class_remapper_param_path [default: $(var model_path)/detection_class_remapper.param.yaml]
      • common_param_path [default: $(find-pkg-share autoware_lidar_centerpoint)/config/centerpoint_common.param.yaml]
      • build_only [default: false]
      • use_pointcloud_container [default: false]
      • pointcloud_container_name [default: pointcloud_container]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_lidar_centerpoint at Robotics Stack Exchange

No version for distro jazzy showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_lidar_centerpoint package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

The autoware_lidar_centerpoint package

Additional Links

No additional links.

Maintainers

  • Kenzo Lobos-Tsunekawa
  • Amadeusz Szymko
  • Kotaro Uetake
  • Masato Saeki
  • Taekjin Lee
  • Kok Seang Tan

Authors

No additional authors.

autoware_lidar_centerpoint

Purpose

autoware_lidar_centerpoint is a package for detecting dynamic 3D objects.

Inner-workings / Algorithms

In this implementation, CenterPoint [1] uses a PointPillars-based [2] network to inference with TensorRT.

We trained the models using https://github.com/open-mmlab/mmdetection3d.

Inputs / Outputs

Input

Name Type Description
~/input/pointcloud sensor_msgs::msg::PointCloud2 input pointcloud

Output

Name Type Description
~/output/objects autoware_perception_msgs::msg::DetectedObjects detected objects
debug/cyclic_time_ms autoware_internal_debug_msgs::msg::Float64Stamped cyclic time (msg)
debug/processing_time_ms autoware_internal_debug_msgs::msg::Float64Stamped processing time (ms)

Parameters

ML Model Parameters

Note that these parameters are associated with ONNX file, predefined during the training phase. Be careful to change ONNX file as well when changing this parameter. Also, whenever you update the ONNX file, do NOT forget to check these values.

Name Type Default Value Description
model_params.class_names list[string] [“CAR”, “TRUCK”, “BUS”, “BICYCLE”, “PEDESTRIAN”] list of class names for model outputs
model_params.point_feature_size int 4 number of features per point in the point cloud
model_params.max_voxel_size int 40000 maximum number of voxels
model_params.point_cloud_range list[double] [-76.8, -76.8, -4.0, 76.8, 76.8, 6.0] detection range [min_x, min_y, min_z, max_x, max_y, max_z] [m]
model_params.voxel_size list[double] [0.32, 0.32, 10.0] size of each voxel [x, y, z] [m]
model_params.downsample_factor int 1 downsample factor for coordinates
model_params.encoder_in_feature_size int 9 number of input features to the encoder
model_params.has_variance bool false true if the model outputs pose variance as well as pose for each bbox
model_params.has_twist bool false true if the model outputs velocity as well as pose for each bbox

Core Parameters

Name Type Default Value Description
encoder_onnx_path string "" path to VoxelFeatureEncoder ONNX file
encoder_engine_path string "" path to VoxelFeatureEncoder TensorRT Engine file
head_onnx_path string "" path to DetectionHead ONNX file
head_engine_path string "" path to DetectionHead TensorRT Engine file
build_only bool false shutdown the node after TensorRT engine file is built
trt_precision string fp16 TensorRT inference precision: fp32 or fp16
post_process_params.score_thresholds list[double] [0.35, 0.35, 0.35, 0.35, 0.35] detected objects with score less than their label threshold are ignored.
post_process_params.yaw_norm_thresholds list[double] [0.3, 0.3, 0.3, 0.3, 0.0] An array of distance threshold values of norm of yaw [rad].
post_process_params.iou_nms_search_distance_2d double - If two objects are farther than the value, NMS isn’t applied.
post_process_params.iou_nms_threshold double - IoU threshold for the IoU-based Non Maximum Suppression
post_process_params.has_twist boolean false Indicates whether the model outputs twist value.
densification_params.world_frame_id string map the world frame id to fuse multi-frame pointcloud
densification_params.num_past_frames int 1 the number of past frames to fuse with the current frame

The build_only option

The autoware_lidar_centerpoint node has build_only option to build the TensorRT engine file from the ONNX file. Although it is preferred to move all the ROS parameters in .param.yaml file in Autoware Universe, the build_only option is not moved to the .param.yaml file for now, because it may be used as a flag to execute the build as a pre-task. You can execute with the following command:

ros2 launch autoware_lidar_centerpoint lidar_centerpoint.launch.xml model_name:=centerpoint_tiny model_path:=/home/autoware/autoware_data/lidar_centerpoint model_param_path:=$(ros2 pkg prefix autoware_lidar_centerpoint --share)/config/centerpoint_tiny.param.yaml build_only:=true

Assumptions / Known limits

  • The object.existence_probability is stored the value of classification confidence of a DNN, not probability.

Trained Models

You can download the onnx format of trained models by clicking on the links below.

Centerpoint was trained in nuScenes (~28k lidar frames) [8] and TIER IV’s internal database (~11k lidar frames) for 60 epochs. Centerpoint tiny was trained in Argoverse 2 (~110k lidar frames) [9] and TIER IV’s internal database (~11k lidar frames) for 20 epochs.

Training CenterPoint Model and Deploying to the Autoware

Overview

This guide provides instructions on training a CenterPoint model using the mmdetection3d repository and seamlessly deploying it within Autoware.

Installation

Install prerequisites

Step 1. Download and install Miniconda from the official website.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_lidar_centerpoint

0.47.0 (2025-08-11)

  • feat(autoware_lidar_centerpoint): add class-wise confidence thresholds to CenterPoint (#10881)

    • Add PreprocessCuda to CenterPoint
    • style(pre-commit): autofix
    • style(pre-commit): autofix
    • Add intensity preprocessing
    • style(pre-commit): autofix
    • Fix config_.point_feature_size_ typo
    • style(pre-commit): autofix
    • Fix point typo
    • style(pre-commit): autofix
    • Change score_threshold to score_thresholds
    • Use <autoware/cuda_utils/cuda_utils.hpp> for clear_async
    • Rename pre_ptr_ to pre_proc_ptr_
    • Remove unused getCacheSize() and getIdx
    • Use template in generateVoxels_random_kernel instead
    • style(pre-commit): autofix
    • Remove references in generateVoxels_random_kernel
    • Remove references in generateVoxels_random_kernel
    • style(pre-commit): autofix
    • Remove generateIntensityFeatures_kernel and add the case of 11 to ENCODER_IN_FEATURE_SIZE for generateFeatures_kernel
    • style(pre-commit): autofix
    • Add class-wise confidence thresholds to CenterPoint
    • style(pre-commit): autofix
    • Remov empty line changes
    • Update score_threshold to score_thresholds in REAMME
    • style(pre-commit): autofix
    • Change score_thresholds from pass by value to pass by reference
    • style(pre-commit): autofix
    • Add information about class names in scehema
    • Change vector<double> to vector<float>
    • Remove thrust and add stream_ to PostProcessCUDA
    • style(pre-commit): autofix
    • Fix incorrect initialization of score_thresholds_ vector
    • Fix postprocess CudaMemCpy error
    • Fix postprocess score_thresholds_d_ptr_ typing error
    • Fix score_thresholds typing in node.cpp
    • Static casting params.score_thresholds vector
    • style(pre-commit): autofix
    • Update perception/autoware_lidar_centerpoint/src/node.cpp
    • Update perception/autoware_lidar_centerpoint/include/autoware/lidar_centerpoint/centerpoint_config.hpp
    • Update centerpoint_config.hpp
    • Update node.cpp
    • Update score_thresholds_ to double since ros2 supports only double instead of float
    • style(pre-commit): autofix
    • Fix cuda memory and revert double score_thresholds_ to float score_thresholds_

    * style(pre-commit): autofix ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Taekjin LEE <<technolojin@gmail.com>>

  • feat(autoware_lidar_centerpoint): add Intensity support to CenterPoint (#10854)

    • Add PreprocessCuda to CenterPoint
    • style(pre-commit): autofix
    • style(pre-commit): autofix
    • Add intensity preprocessing
    • style(pre-commit): autofix
    • Fix config_.point_feature_size_ typo
    • style(pre-commit): autofix
    • Fix point typo
    • style(pre-commit): autofix
    • Use <autoware/cuda_utils/cuda_utils.hpp> for clear_async
    • Rename pre_ptr_ to pre_proc_ptr_
    • Remove unused getCacheSize() and getIdx
    • Use template in generateVoxels_random_kernel instead
    • style(pre-commit): autofix
    • Remove references in generateVoxels_random_kernel
    • Remove references in generateVoxels_random_kernel
    • style(pre-commit): autofix
    • Remove generateIntensityFeatures_kernel and add the case of 11 to ENCODER_IN_FEATURE_SIZE for generateFeatures_kernel
    • style(pre-commit): autofix

    * Remov empty line changes ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • Contributors: Kok Seang Tan

0.46.0 (2025-06-20)

  • Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base

  • chore(perception): delete maintainer name (#10816)

File truncated at 100 lines see the full file

Launch files

  • launch/lidar_centerpoint.launch.xml
      • input/pointcloud [default: /sensing/lidar/pointcloud]
      • output/objects [default: objects]
      • data_path [default: $(env HOME)/autoware_data]
      • node_name [default: lidar_centerpoint]
      • model_name [default: centerpoint_tiny]
      • model_path [default: $(var data_path)/$(var node_name)]
      • model_param_path [default: $(find-pkg-share autoware_lidar_centerpoint)/config/$(var model_name).param.yaml]
      • ml_package_param_path [default: $(var model_path)/$(var model_name)_ml_package.param.yaml]
      • class_remapper_param_path [default: $(var model_path)/detection_class_remapper.param.yaml]
      • common_param_path [default: $(find-pkg-share autoware_lidar_centerpoint)/config/centerpoint_common.param.yaml]
      • build_only [default: false]
      • use_pointcloud_container [default: false]
      • pointcloud_container_name [default: pointcloud_container]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_lidar_centerpoint at Robotics Stack Exchange

No version for distro kilted showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_lidar_centerpoint package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

The autoware_lidar_centerpoint package

Additional Links

No additional links.

Maintainers

  • Kenzo Lobos-Tsunekawa
  • Amadeusz Szymko
  • Kotaro Uetake
  • Masato Saeki
  • Taekjin Lee
  • Kok Seang Tan

Authors

No additional authors.

autoware_lidar_centerpoint

Purpose

autoware_lidar_centerpoint is a package for detecting dynamic 3D objects.

Inner-workings / Algorithms

In this implementation, CenterPoint [1] uses a PointPillars-based [2] network to inference with TensorRT.

We trained the models using https://github.com/open-mmlab/mmdetection3d.

Inputs / Outputs

Input

Name Type Description
~/input/pointcloud sensor_msgs::msg::PointCloud2 input pointcloud

Output

Name Type Description
~/output/objects autoware_perception_msgs::msg::DetectedObjects detected objects
debug/cyclic_time_ms autoware_internal_debug_msgs::msg::Float64Stamped cyclic time (msg)
debug/processing_time_ms autoware_internal_debug_msgs::msg::Float64Stamped processing time (ms)

Parameters

ML Model Parameters

Note that these parameters are associated with ONNX file, predefined during the training phase. Be careful to change ONNX file as well when changing this parameter. Also, whenever you update the ONNX file, do NOT forget to check these values.

Name Type Default Value Description
model_params.class_names list[string] [“CAR”, “TRUCK”, “BUS”, “BICYCLE”, “PEDESTRIAN”] list of class names for model outputs
model_params.point_feature_size int 4 number of features per point in the point cloud
model_params.max_voxel_size int 40000 maximum number of voxels
model_params.point_cloud_range list[double] [-76.8, -76.8, -4.0, 76.8, 76.8, 6.0] detection range [min_x, min_y, min_z, max_x, max_y, max_z] [m]
model_params.voxel_size list[double] [0.32, 0.32, 10.0] size of each voxel [x, y, z] [m]
model_params.downsample_factor int 1 downsample factor for coordinates
model_params.encoder_in_feature_size int 9 number of input features to the encoder
model_params.has_variance bool false true if the model outputs pose variance as well as pose for each bbox
model_params.has_twist bool false true if the model outputs velocity as well as pose for each bbox

Core Parameters

Name Type Default Value Description
encoder_onnx_path string "" path to VoxelFeatureEncoder ONNX file
encoder_engine_path string "" path to VoxelFeatureEncoder TensorRT Engine file
head_onnx_path string "" path to DetectionHead ONNX file
head_engine_path string "" path to DetectionHead TensorRT Engine file
build_only bool false shutdown the node after TensorRT engine file is built
trt_precision string fp16 TensorRT inference precision: fp32 or fp16
post_process_params.score_thresholds list[double] [0.35, 0.35, 0.35, 0.35, 0.35] detected objects with score less than their label threshold are ignored.
post_process_params.yaw_norm_thresholds list[double] [0.3, 0.3, 0.3, 0.3, 0.0] An array of distance threshold values of norm of yaw [rad].
post_process_params.iou_nms_search_distance_2d double - If two objects are farther than the value, NMS isn’t applied.
post_process_params.iou_nms_threshold double - IoU threshold for the IoU-based Non Maximum Suppression
post_process_params.has_twist boolean false Indicates whether the model outputs twist value.
densification_params.world_frame_id string map the world frame id to fuse multi-frame pointcloud
densification_params.num_past_frames int 1 the number of past frames to fuse with the current frame

The build_only option

The autoware_lidar_centerpoint node has build_only option to build the TensorRT engine file from the ONNX file. Although it is preferred to move all the ROS parameters in .param.yaml file in Autoware Universe, the build_only option is not moved to the .param.yaml file for now, because it may be used as a flag to execute the build as a pre-task. You can execute with the following command:

ros2 launch autoware_lidar_centerpoint lidar_centerpoint.launch.xml model_name:=centerpoint_tiny model_path:=/home/autoware/autoware_data/lidar_centerpoint model_param_path:=$(ros2 pkg prefix autoware_lidar_centerpoint --share)/config/centerpoint_tiny.param.yaml build_only:=true

Assumptions / Known limits

  • The object.existence_probability is stored the value of classification confidence of a DNN, not probability.

Trained Models

You can download the onnx format of trained models by clicking on the links below.

Centerpoint was trained in nuScenes (~28k lidar frames) [8] and TIER IV’s internal database (~11k lidar frames) for 60 epochs. Centerpoint tiny was trained in Argoverse 2 (~110k lidar frames) [9] and TIER IV’s internal database (~11k lidar frames) for 20 epochs.

Training CenterPoint Model and Deploying to the Autoware

Overview

This guide provides instructions on training a CenterPoint model using the mmdetection3d repository and seamlessly deploying it within Autoware.

Installation

Install prerequisites

Step 1. Download and install Miniconda from the official website.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_lidar_centerpoint

0.47.0 (2025-08-11)

  • feat(autoware_lidar_centerpoint): add class-wise confidence thresholds to CenterPoint (#10881)

    • Add PreprocessCuda to CenterPoint
    • style(pre-commit): autofix
    • style(pre-commit): autofix
    • Add intensity preprocessing
    • style(pre-commit): autofix
    • Fix config_.point_feature_size_ typo
    • style(pre-commit): autofix
    • Fix point typo
    • style(pre-commit): autofix
    • Change score_threshold to score_thresholds
    • Use <autoware/cuda_utils/cuda_utils.hpp> for clear_async
    • Rename pre_ptr_ to pre_proc_ptr_
    • Remove unused getCacheSize() and getIdx
    • Use template in generateVoxels_random_kernel instead
    • style(pre-commit): autofix
    • Remove references in generateVoxels_random_kernel
    • Remove references in generateVoxels_random_kernel
    • style(pre-commit): autofix
    • Remove generateIntensityFeatures_kernel and add the case of 11 to ENCODER_IN_FEATURE_SIZE for generateFeatures_kernel
    • style(pre-commit): autofix
    • Add class-wise confidence thresholds to CenterPoint
    • style(pre-commit): autofix
    • Remov empty line changes
    • Update score_threshold to score_thresholds in REAMME
    • style(pre-commit): autofix
    • Change score_thresholds from pass by value to pass by reference
    • style(pre-commit): autofix
    • Add information about class names in scehema
    • Change vector<double> to vector<float>
    • Remove thrust and add stream_ to PostProcessCUDA
    • style(pre-commit): autofix
    • Fix incorrect initialization of score_thresholds_ vector
    • Fix postprocess CudaMemCpy error
    • Fix postprocess score_thresholds_d_ptr_ typing error
    • Fix score_thresholds typing in node.cpp
    • Static casting params.score_thresholds vector
    • style(pre-commit): autofix
    • Update perception/autoware_lidar_centerpoint/src/node.cpp
    • Update perception/autoware_lidar_centerpoint/include/autoware/lidar_centerpoint/centerpoint_config.hpp
    • Update centerpoint_config.hpp
    • Update node.cpp
    • Update score_thresholds_ to double since ros2 supports only double instead of float
    • style(pre-commit): autofix
    • Fix cuda memory and revert double score_thresholds_ to float score_thresholds_

    * style(pre-commit): autofix ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Taekjin LEE <<technolojin@gmail.com>>

  • feat(autoware_lidar_centerpoint): add Intensity support to CenterPoint (#10854)

    • Add PreprocessCuda to CenterPoint
    • style(pre-commit): autofix
    • style(pre-commit): autofix
    • Add intensity preprocessing
    • style(pre-commit): autofix
    • Fix config_.point_feature_size_ typo
    • style(pre-commit): autofix
    • Fix point typo
    • style(pre-commit): autofix
    • Use <autoware/cuda_utils/cuda_utils.hpp> for clear_async
    • Rename pre_ptr_ to pre_proc_ptr_
    • Remove unused getCacheSize() and getIdx
    • Use template in generateVoxels_random_kernel instead
    • style(pre-commit): autofix
    • Remove references in generateVoxels_random_kernel
    • Remove references in generateVoxels_random_kernel
    • style(pre-commit): autofix
    • Remove generateIntensityFeatures_kernel and add the case of 11 to ENCODER_IN_FEATURE_SIZE for generateFeatures_kernel
    • style(pre-commit): autofix

    * Remov empty line changes ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • Contributors: Kok Seang Tan

0.46.0 (2025-06-20)

  • Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base

  • chore(perception): delete maintainer name (#10816)

File truncated at 100 lines see the full file

Launch files

  • launch/lidar_centerpoint.launch.xml
      • input/pointcloud [default: /sensing/lidar/pointcloud]
      • output/objects [default: objects]
      • data_path [default: $(env HOME)/autoware_data]
      • node_name [default: lidar_centerpoint]
      • model_name [default: centerpoint_tiny]
      • model_path [default: $(var data_path)/$(var node_name)]
      • model_param_path [default: $(find-pkg-share autoware_lidar_centerpoint)/config/$(var model_name).param.yaml]
      • ml_package_param_path [default: $(var model_path)/$(var model_name)_ml_package.param.yaml]
      • class_remapper_param_path [default: $(var model_path)/detection_class_remapper.param.yaml]
      • common_param_path [default: $(find-pkg-share autoware_lidar_centerpoint)/config/centerpoint_common.param.yaml]
      • build_only [default: false]
      • use_pointcloud_container [default: false]
      • pointcloud_container_name [default: pointcloud_container]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_lidar_centerpoint at Robotics Stack Exchange

No version for distro rolling showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_lidar_centerpoint package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

The autoware_lidar_centerpoint package

Additional Links

No additional links.

Maintainers

  • Kenzo Lobos-Tsunekawa
  • Amadeusz Szymko
  • Kotaro Uetake
  • Masato Saeki
  • Taekjin Lee
  • Kok Seang Tan

Authors

No additional authors.

autoware_lidar_centerpoint

Purpose

autoware_lidar_centerpoint is a package for detecting dynamic 3D objects.

Inner-workings / Algorithms

In this implementation, CenterPoint [1] uses a PointPillars-based [2] network to inference with TensorRT.

We trained the models using https://github.com/open-mmlab/mmdetection3d.

Inputs / Outputs

Input

Name Type Description
~/input/pointcloud sensor_msgs::msg::PointCloud2 input pointcloud

Output

Name Type Description
~/output/objects autoware_perception_msgs::msg::DetectedObjects detected objects
debug/cyclic_time_ms autoware_internal_debug_msgs::msg::Float64Stamped cyclic time (msg)
debug/processing_time_ms autoware_internal_debug_msgs::msg::Float64Stamped processing time (ms)

Parameters

ML Model Parameters

Note that these parameters are associated with ONNX file, predefined during the training phase. Be careful to change ONNX file as well when changing this parameter. Also, whenever you update the ONNX file, do NOT forget to check these values.

Name Type Default Value Description
model_params.class_names list[string] [“CAR”, “TRUCK”, “BUS”, “BICYCLE”, “PEDESTRIAN”] list of class names for model outputs
model_params.point_feature_size int 4 number of features per point in the point cloud
model_params.max_voxel_size int 40000 maximum number of voxels
model_params.point_cloud_range list[double] [-76.8, -76.8, -4.0, 76.8, 76.8, 6.0] detection range [min_x, min_y, min_z, max_x, max_y, max_z] [m]
model_params.voxel_size list[double] [0.32, 0.32, 10.0] size of each voxel [x, y, z] [m]
model_params.downsample_factor int 1 downsample factor for coordinates
model_params.encoder_in_feature_size int 9 number of input features to the encoder
model_params.has_variance bool false true if the model outputs pose variance as well as pose for each bbox
model_params.has_twist bool false true if the model outputs velocity as well as pose for each bbox

Core Parameters

Name Type Default Value Description
encoder_onnx_path string "" path to VoxelFeatureEncoder ONNX file
encoder_engine_path string "" path to VoxelFeatureEncoder TensorRT Engine file
head_onnx_path string "" path to DetectionHead ONNX file
head_engine_path string "" path to DetectionHead TensorRT Engine file
build_only bool false shutdown the node after TensorRT engine file is built
trt_precision string fp16 TensorRT inference precision: fp32 or fp16
post_process_params.score_thresholds list[double] [0.35, 0.35, 0.35, 0.35, 0.35] detected objects with score less than their label threshold are ignored.
post_process_params.yaw_norm_thresholds list[double] [0.3, 0.3, 0.3, 0.3, 0.0] An array of distance threshold values of norm of yaw [rad].
post_process_params.iou_nms_search_distance_2d double - If two objects are farther than the value, NMS isn’t applied.
post_process_params.iou_nms_threshold double - IoU threshold for the IoU-based Non Maximum Suppression
post_process_params.has_twist boolean false Indicates whether the model outputs twist value.
densification_params.world_frame_id string map the world frame id to fuse multi-frame pointcloud
densification_params.num_past_frames int 1 the number of past frames to fuse with the current frame

The build_only option

The autoware_lidar_centerpoint node has build_only option to build the TensorRT engine file from the ONNX file. Although it is preferred to move all the ROS parameters in .param.yaml file in Autoware Universe, the build_only option is not moved to the .param.yaml file for now, because it may be used as a flag to execute the build as a pre-task. You can execute with the following command:

ros2 launch autoware_lidar_centerpoint lidar_centerpoint.launch.xml model_name:=centerpoint_tiny model_path:=/home/autoware/autoware_data/lidar_centerpoint model_param_path:=$(ros2 pkg prefix autoware_lidar_centerpoint --share)/config/centerpoint_tiny.param.yaml build_only:=true

Assumptions / Known limits

  • The object.existence_probability is stored the value of classification confidence of a DNN, not probability.

Trained Models

You can download the onnx format of trained models by clicking on the links below.

Centerpoint was trained in nuScenes (~28k lidar frames) [8] and TIER IV’s internal database (~11k lidar frames) for 60 epochs. Centerpoint tiny was trained in Argoverse 2 (~110k lidar frames) [9] and TIER IV’s internal database (~11k lidar frames) for 20 epochs.

Training CenterPoint Model and Deploying to the Autoware

Overview

This guide provides instructions on training a CenterPoint model using the mmdetection3d repository and seamlessly deploying it within Autoware.

Installation

Install prerequisites

Step 1. Download and install Miniconda from the official website.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_lidar_centerpoint

0.47.0 (2025-08-11)

  • feat(autoware_lidar_centerpoint): add class-wise confidence thresholds to CenterPoint (#10881)

    • Add PreprocessCuda to CenterPoint
    • style(pre-commit): autofix
    • style(pre-commit): autofix
    • Add intensity preprocessing
    • style(pre-commit): autofix
    • Fix config_.point_feature_size_ typo
    • style(pre-commit): autofix
    • Fix point typo
    • style(pre-commit): autofix
    • Change score_threshold to score_thresholds
    • Use <autoware/cuda_utils/cuda_utils.hpp> for clear_async
    • Rename pre_ptr_ to pre_proc_ptr_
    • Remove unused getCacheSize() and getIdx
    • Use template in generateVoxels_random_kernel instead
    • style(pre-commit): autofix
    • Remove references in generateVoxels_random_kernel
    • Remove references in generateVoxels_random_kernel
    • style(pre-commit): autofix
    • Remove generateIntensityFeatures_kernel and add the case of 11 to ENCODER_IN_FEATURE_SIZE for generateFeatures_kernel
    • style(pre-commit): autofix
    • Add class-wise confidence thresholds to CenterPoint
    • style(pre-commit): autofix
    • Remov empty line changes
    • Update score_threshold to score_thresholds in REAMME
    • style(pre-commit): autofix
    • Change score_thresholds from pass by value to pass by reference
    • style(pre-commit): autofix
    • Add information about class names in scehema
    • Change vector<double> to vector<float>
    • Remove thrust and add stream_ to PostProcessCUDA
    • style(pre-commit): autofix
    • Fix incorrect initialization of score_thresholds_ vector
    • Fix postprocess CudaMemCpy error
    • Fix postprocess score_thresholds_d_ptr_ typing error
    • Fix score_thresholds typing in node.cpp
    • Static casting params.score_thresholds vector
    • style(pre-commit): autofix
    • Update perception/autoware_lidar_centerpoint/src/node.cpp
    • Update perception/autoware_lidar_centerpoint/include/autoware/lidar_centerpoint/centerpoint_config.hpp
    • Update centerpoint_config.hpp
    • Update node.cpp
    • Update score_thresholds_ to double since ros2 supports only double instead of float
    • style(pre-commit): autofix
    • Fix cuda memory and revert double score_thresholds_ to float score_thresholds_

    * style(pre-commit): autofix ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Taekjin LEE <<technolojin@gmail.com>>

  • feat(autoware_lidar_centerpoint): add Intensity support to CenterPoint (#10854)

    • Add PreprocessCuda to CenterPoint
    • style(pre-commit): autofix
    • style(pre-commit): autofix
    • Add intensity preprocessing
    • style(pre-commit): autofix
    • Fix config_.point_feature_size_ typo
    • style(pre-commit): autofix
    • Fix point typo
    • style(pre-commit): autofix
    • Use <autoware/cuda_utils/cuda_utils.hpp> for clear_async
    • Rename pre_ptr_ to pre_proc_ptr_
    • Remove unused getCacheSize() and getIdx
    • Use template in generateVoxels_random_kernel instead
    • style(pre-commit): autofix
    • Remove references in generateVoxels_random_kernel
    • Remove references in generateVoxels_random_kernel
    • style(pre-commit): autofix
    • Remove generateIntensityFeatures_kernel and add the case of 11 to ENCODER_IN_FEATURE_SIZE for generateFeatures_kernel
    • style(pre-commit): autofix

    * Remov empty line changes ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • Contributors: Kok Seang Tan

0.46.0 (2025-06-20)

  • Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base

  • chore(perception): delete maintainer name (#10816)

File truncated at 100 lines see the full file

Launch files

  • launch/lidar_centerpoint.launch.xml
      • input/pointcloud [default: /sensing/lidar/pointcloud]
      • output/objects [default: objects]
      • data_path [default: $(env HOME)/autoware_data]
      • node_name [default: lidar_centerpoint]
      • model_name [default: centerpoint_tiny]
      • model_path [default: $(var data_path)/$(var node_name)]
      • model_param_path [default: $(find-pkg-share autoware_lidar_centerpoint)/config/$(var model_name).param.yaml]
      • ml_package_param_path [default: $(var model_path)/$(var model_name)_ml_package.param.yaml]
      • class_remapper_param_path [default: $(var model_path)/detection_class_remapper.param.yaml]
      • common_param_path [default: $(find-pkg-share autoware_lidar_centerpoint)/config/centerpoint_common.param.yaml]
      • build_only [default: false]
      • use_pointcloud_container [default: false]
      • pointcloud_container_name [default: pointcloud_container]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_lidar_centerpoint at Robotics Stack Exchange

Package symbol

autoware_lidar_centerpoint package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

The autoware_lidar_centerpoint package

Additional Links

No additional links.

Maintainers

  • Kenzo Lobos-Tsunekawa
  • Amadeusz Szymko
  • Kotaro Uetake
  • Masato Saeki
  • Taekjin Lee
  • Kok Seang Tan

Authors

No additional authors.

autoware_lidar_centerpoint

Purpose

autoware_lidar_centerpoint is a package for detecting dynamic 3D objects.

Inner-workings / Algorithms

In this implementation, CenterPoint [1] uses a PointPillars-based [2] network to inference with TensorRT.

We trained the models using https://github.com/open-mmlab/mmdetection3d.

Inputs / Outputs

Input

Name Type Description
~/input/pointcloud sensor_msgs::msg::PointCloud2 input pointcloud

Output

Name Type Description
~/output/objects autoware_perception_msgs::msg::DetectedObjects detected objects
debug/cyclic_time_ms autoware_internal_debug_msgs::msg::Float64Stamped cyclic time (msg)
debug/processing_time_ms autoware_internal_debug_msgs::msg::Float64Stamped processing time (ms)

Parameters

ML Model Parameters

Note that these parameters are associated with ONNX file, predefined during the training phase. Be careful to change ONNX file as well when changing this parameter. Also, whenever you update the ONNX file, do NOT forget to check these values.

Name Type Default Value Description
model_params.class_names list[string] [“CAR”, “TRUCK”, “BUS”, “BICYCLE”, “PEDESTRIAN”] list of class names for model outputs
model_params.point_feature_size int 4 number of features per point in the point cloud
model_params.max_voxel_size int 40000 maximum number of voxels
model_params.point_cloud_range list[double] [-76.8, -76.8, -4.0, 76.8, 76.8, 6.0] detection range [min_x, min_y, min_z, max_x, max_y, max_z] [m]
model_params.voxel_size list[double] [0.32, 0.32, 10.0] size of each voxel [x, y, z] [m]
model_params.downsample_factor int 1 downsample factor for coordinates
model_params.encoder_in_feature_size int 9 number of input features to the encoder
model_params.has_variance bool false true if the model outputs pose variance as well as pose for each bbox
model_params.has_twist bool false true if the model outputs velocity as well as pose for each bbox

Core Parameters

Name Type Default Value Description
encoder_onnx_path string "" path to VoxelFeatureEncoder ONNX file
encoder_engine_path string "" path to VoxelFeatureEncoder TensorRT Engine file
head_onnx_path string "" path to DetectionHead ONNX file
head_engine_path string "" path to DetectionHead TensorRT Engine file
build_only bool false shutdown the node after TensorRT engine file is built
trt_precision string fp16 TensorRT inference precision: fp32 or fp16
post_process_params.score_thresholds list[double] [0.35, 0.35, 0.35, 0.35, 0.35] detected objects with score less than their label threshold are ignored.
post_process_params.yaw_norm_thresholds list[double] [0.3, 0.3, 0.3, 0.3, 0.0] An array of distance threshold values of norm of yaw [rad].
post_process_params.iou_nms_search_distance_2d double - If two objects are farther than the value, NMS isn’t applied.
post_process_params.iou_nms_threshold double - IoU threshold for the IoU-based Non Maximum Suppression
post_process_params.has_twist boolean false Indicates whether the model outputs twist value.
densification_params.world_frame_id string map the world frame id to fuse multi-frame pointcloud
densification_params.num_past_frames int 1 the number of past frames to fuse with the current frame

The build_only option

The autoware_lidar_centerpoint node has build_only option to build the TensorRT engine file from the ONNX file. Although it is preferred to move all the ROS parameters in .param.yaml file in Autoware Universe, the build_only option is not moved to the .param.yaml file for now, because it may be used as a flag to execute the build as a pre-task. You can execute with the following command:

ros2 launch autoware_lidar_centerpoint lidar_centerpoint.launch.xml model_name:=centerpoint_tiny model_path:=/home/autoware/autoware_data/lidar_centerpoint model_param_path:=$(ros2 pkg prefix autoware_lidar_centerpoint --share)/config/centerpoint_tiny.param.yaml build_only:=true

Assumptions / Known limits

  • The object.existence_probability is stored the value of classification confidence of a DNN, not probability.

Trained Models

You can download the onnx format of trained models by clicking on the links below.

Centerpoint was trained in nuScenes (~28k lidar frames) [8] and TIER IV’s internal database (~11k lidar frames) for 60 epochs. Centerpoint tiny was trained in Argoverse 2 (~110k lidar frames) [9] and TIER IV’s internal database (~11k lidar frames) for 20 epochs.

Training CenterPoint Model and Deploying to the Autoware

Overview

This guide provides instructions on training a CenterPoint model using the mmdetection3d repository and seamlessly deploying it within Autoware.

Installation

Install prerequisites

Step 1. Download and install Miniconda from the official website.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_lidar_centerpoint

0.47.0 (2025-08-11)

  • feat(autoware_lidar_centerpoint): add class-wise confidence thresholds to CenterPoint (#10881)

    • Add PreprocessCuda to CenterPoint
    • style(pre-commit): autofix
    • style(pre-commit): autofix
    • Add intensity preprocessing
    • style(pre-commit): autofix
    • Fix config_.point_feature_size_ typo
    • style(pre-commit): autofix
    • Fix point typo
    • style(pre-commit): autofix
    • Change score_threshold to score_thresholds
    • Use <autoware/cuda_utils/cuda_utils.hpp> for clear_async
    • Rename pre_ptr_ to pre_proc_ptr_
    • Remove unused getCacheSize() and getIdx
    • Use template in generateVoxels_random_kernel instead
    • style(pre-commit): autofix
    • Remove references in generateVoxels_random_kernel
    • Remove references in generateVoxels_random_kernel
    • style(pre-commit): autofix
    • Remove generateIntensityFeatures_kernel and add the case of 11 to ENCODER_IN_FEATURE_SIZE for generateFeatures_kernel
    • style(pre-commit): autofix
    • Add class-wise confidence thresholds to CenterPoint
    • style(pre-commit): autofix
    • Remov empty line changes
    • Update score_threshold to score_thresholds in REAMME
    • style(pre-commit): autofix
    • Change score_thresholds from pass by value to pass by reference
    • style(pre-commit): autofix
    • Add information about class names in scehema
    • Change vector<double> to vector<float>
    • Remove thrust and add stream_ to PostProcessCUDA
    • style(pre-commit): autofix
    • Fix incorrect initialization of score_thresholds_ vector
    • Fix postprocess CudaMemCpy error
    • Fix postprocess score_thresholds_d_ptr_ typing error
    • Fix score_thresholds typing in node.cpp
    • Static casting params.score_thresholds vector
    • style(pre-commit): autofix
    • Update perception/autoware_lidar_centerpoint/src/node.cpp
    • Update perception/autoware_lidar_centerpoint/include/autoware/lidar_centerpoint/centerpoint_config.hpp
    • Update centerpoint_config.hpp
    • Update node.cpp
    • Update score_thresholds_ to double since ros2 supports only double instead of float
    • style(pre-commit): autofix
    • Fix cuda memory and revert double score_thresholds_ to float score_thresholds_

    * style(pre-commit): autofix ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Taekjin LEE <<technolojin@gmail.com>>

  • feat(autoware_lidar_centerpoint): add Intensity support to CenterPoint (#10854)

    • Add PreprocessCuda to CenterPoint
    • style(pre-commit): autofix
    • style(pre-commit): autofix
    • Add intensity preprocessing
    • style(pre-commit): autofix
    • Fix config_.point_feature_size_ typo
    • style(pre-commit): autofix
    • Fix point typo
    • style(pre-commit): autofix
    • Use <autoware/cuda_utils/cuda_utils.hpp> for clear_async
    • Rename pre_ptr_ to pre_proc_ptr_
    • Remove unused getCacheSize() and getIdx
    • Use template in generateVoxels_random_kernel instead
    • style(pre-commit): autofix
    • Remove references in generateVoxels_random_kernel
    • Remove references in generateVoxels_random_kernel
    • style(pre-commit): autofix
    • Remove generateIntensityFeatures_kernel and add the case of 11 to ENCODER_IN_FEATURE_SIZE for generateFeatures_kernel
    • style(pre-commit): autofix

    * Remov empty line changes ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • Contributors: Kok Seang Tan

0.46.0 (2025-06-20)

  • Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base

  • chore(perception): delete maintainer name (#10816)

File truncated at 100 lines see the full file

Launch files

  • launch/lidar_centerpoint.launch.xml
      • input/pointcloud [default: /sensing/lidar/pointcloud]
      • output/objects [default: objects]
      • data_path [default: $(env HOME)/autoware_data]
      • node_name [default: lidar_centerpoint]
      • model_name [default: centerpoint_tiny]
      • model_path [default: $(var data_path)/$(var node_name)]
      • model_param_path [default: $(find-pkg-share autoware_lidar_centerpoint)/config/$(var model_name).param.yaml]
      • ml_package_param_path [default: $(var model_path)/$(var model_name)_ml_package.param.yaml]
      • class_remapper_param_path [default: $(var model_path)/detection_class_remapper.param.yaml]
      • common_param_path [default: $(find-pkg-share autoware_lidar_centerpoint)/config/centerpoint_common.param.yaml]
      • build_only [default: false]
      • use_pointcloud_container [default: false]
      • pointcloud_container_name [default: pointcloud_container]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_lidar_centerpoint at Robotics Stack Exchange

No version for distro galactic showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_lidar_centerpoint package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

The autoware_lidar_centerpoint package

Additional Links

No additional links.

Maintainers

  • Kenzo Lobos-Tsunekawa
  • Amadeusz Szymko
  • Kotaro Uetake
  • Masato Saeki
  • Taekjin Lee
  • Kok Seang Tan

Authors

No additional authors.

autoware_lidar_centerpoint

Purpose

autoware_lidar_centerpoint is a package for detecting dynamic 3D objects.

Inner-workings / Algorithms

In this implementation, CenterPoint [1] uses a PointPillars-based [2] network to inference with TensorRT.

We trained the models using https://github.com/open-mmlab/mmdetection3d.

Inputs / Outputs

Input

Name Type Description
~/input/pointcloud sensor_msgs::msg::PointCloud2 input pointcloud

Output

Name Type Description
~/output/objects autoware_perception_msgs::msg::DetectedObjects detected objects
debug/cyclic_time_ms autoware_internal_debug_msgs::msg::Float64Stamped cyclic time (msg)
debug/processing_time_ms autoware_internal_debug_msgs::msg::Float64Stamped processing time (ms)

Parameters

ML Model Parameters

Note that these parameters are associated with ONNX file, predefined during the training phase. Be careful to change ONNX file as well when changing this parameter. Also, whenever you update the ONNX file, do NOT forget to check these values.

Name Type Default Value Description
model_params.class_names list[string] [“CAR”, “TRUCK”, “BUS”, “BICYCLE”, “PEDESTRIAN”] list of class names for model outputs
model_params.point_feature_size int 4 number of features per point in the point cloud
model_params.max_voxel_size int 40000 maximum number of voxels
model_params.point_cloud_range list[double] [-76.8, -76.8, -4.0, 76.8, 76.8, 6.0] detection range [min_x, min_y, min_z, max_x, max_y, max_z] [m]
model_params.voxel_size list[double] [0.32, 0.32, 10.0] size of each voxel [x, y, z] [m]
model_params.downsample_factor int 1 downsample factor for coordinates
model_params.encoder_in_feature_size int 9 number of input features to the encoder
model_params.has_variance bool false true if the model outputs pose variance as well as pose for each bbox
model_params.has_twist bool false true if the model outputs velocity as well as pose for each bbox

Core Parameters

Name Type Default Value Description
encoder_onnx_path string "" path to VoxelFeatureEncoder ONNX file
encoder_engine_path string "" path to VoxelFeatureEncoder TensorRT Engine file
head_onnx_path string "" path to DetectionHead ONNX file
head_engine_path string "" path to DetectionHead TensorRT Engine file
build_only bool false shutdown the node after TensorRT engine file is built
trt_precision string fp16 TensorRT inference precision: fp32 or fp16
post_process_params.score_thresholds list[double] [0.35, 0.35, 0.35, 0.35, 0.35] detected objects with score less than their label threshold are ignored.
post_process_params.yaw_norm_thresholds list[double] [0.3, 0.3, 0.3, 0.3, 0.0] An array of distance threshold values of norm of yaw [rad].
post_process_params.iou_nms_search_distance_2d double - If two objects are farther than the value, NMS isn’t applied.
post_process_params.iou_nms_threshold double - IoU threshold for the IoU-based Non Maximum Suppression
post_process_params.has_twist boolean false Indicates whether the model outputs twist value.
densification_params.world_frame_id string map the world frame id to fuse multi-frame pointcloud
densification_params.num_past_frames int 1 the number of past frames to fuse with the current frame

The build_only option

The autoware_lidar_centerpoint node has build_only option to build the TensorRT engine file from the ONNX file. Although it is preferred to move all the ROS parameters in .param.yaml file in Autoware Universe, the build_only option is not moved to the .param.yaml file for now, because it may be used as a flag to execute the build as a pre-task. You can execute with the following command:

ros2 launch autoware_lidar_centerpoint lidar_centerpoint.launch.xml model_name:=centerpoint_tiny model_path:=/home/autoware/autoware_data/lidar_centerpoint model_param_path:=$(ros2 pkg prefix autoware_lidar_centerpoint --share)/config/centerpoint_tiny.param.yaml build_only:=true

Assumptions / Known limits

  • The object.existence_probability is stored the value of classification confidence of a DNN, not probability.

Trained Models

You can download the onnx format of trained models by clicking on the links below.

Centerpoint was trained in nuScenes (~28k lidar frames) [8] and TIER IV’s internal database (~11k lidar frames) for 60 epochs. Centerpoint tiny was trained in Argoverse 2 (~110k lidar frames) [9] and TIER IV’s internal database (~11k lidar frames) for 20 epochs.

Training CenterPoint Model and Deploying to the Autoware

Overview

This guide provides instructions on training a CenterPoint model using the mmdetection3d repository and seamlessly deploying it within Autoware.

Installation

Install prerequisites

Step 1. Download and install Miniconda from the official website.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_lidar_centerpoint

0.47.0 (2025-08-11)

  • feat(autoware_lidar_centerpoint): add class-wise confidence thresholds to CenterPoint (#10881)

    • Add PreprocessCuda to CenterPoint
    • style(pre-commit): autofix
    • style(pre-commit): autofix
    • Add intensity preprocessing
    • style(pre-commit): autofix
    • Fix config_.point_feature_size_ typo
    • style(pre-commit): autofix
    • Fix point typo
    • style(pre-commit): autofix
    • Change score_threshold to score_thresholds
    • Use <autoware/cuda_utils/cuda_utils.hpp> for clear_async
    • Rename pre_ptr_ to pre_proc_ptr_
    • Remove unused getCacheSize() and getIdx
    • Use template in generateVoxels_random_kernel instead
    • style(pre-commit): autofix
    • Remove references in generateVoxels_random_kernel
    • Remove references in generateVoxels_random_kernel
    • style(pre-commit): autofix
    • Remove generateIntensityFeatures_kernel and add the case of 11 to ENCODER_IN_FEATURE_SIZE for generateFeatures_kernel
    • style(pre-commit): autofix
    • Add class-wise confidence thresholds to CenterPoint
    • style(pre-commit): autofix
    • Remov empty line changes
    • Update score_threshold to score_thresholds in REAMME
    • style(pre-commit): autofix
    • Change score_thresholds from pass by value to pass by reference
    • style(pre-commit): autofix
    • Add information about class names in scehema
    • Change vector<double> to vector<float>
    • Remove thrust and add stream_ to PostProcessCUDA
    • style(pre-commit): autofix
    • Fix incorrect initialization of score_thresholds_ vector
    • Fix postprocess CudaMemCpy error
    • Fix postprocess score_thresholds_d_ptr_ typing error
    • Fix score_thresholds typing in node.cpp
    • Static casting params.score_thresholds vector
    • style(pre-commit): autofix
    • Update perception/autoware_lidar_centerpoint/src/node.cpp
    • Update perception/autoware_lidar_centerpoint/include/autoware/lidar_centerpoint/centerpoint_config.hpp
    • Update centerpoint_config.hpp
    • Update node.cpp
    • Update score_thresholds_ to double since ros2 supports only double instead of float
    • style(pre-commit): autofix
    • Fix cuda memory and revert double score_thresholds_ to float score_thresholds_

    * style(pre-commit): autofix ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Taekjin LEE <<technolojin@gmail.com>>

  • feat(autoware_lidar_centerpoint): add Intensity support to CenterPoint (#10854)

    • Add PreprocessCuda to CenterPoint
    • style(pre-commit): autofix
    • style(pre-commit): autofix
    • Add intensity preprocessing
    • style(pre-commit): autofix
    • Fix config_.point_feature_size_ typo
    • style(pre-commit): autofix
    • Fix point typo
    • style(pre-commit): autofix
    • Use <autoware/cuda_utils/cuda_utils.hpp> for clear_async
    • Rename pre_ptr_ to pre_proc_ptr_
    • Remove unused getCacheSize() and getIdx
    • Use template in generateVoxels_random_kernel instead
    • style(pre-commit): autofix
    • Remove references in generateVoxels_random_kernel
    • Remove references in generateVoxels_random_kernel
    • style(pre-commit): autofix
    • Remove generateIntensityFeatures_kernel and add the case of 11 to ENCODER_IN_FEATURE_SIZE for generateFeatures_kernel
    • style(pre-commit): autofix

    * Remov empty line changes ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • Contributors: Kok Seang Tan

0.46.0 (2025-06-20)

  • Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base

  • chore(perception): delete maintainer name (#10816)

File truncated at 100 lines see the full file

Launch files

  • launch/lidar_centerpoint.launch.xml
      • input/pointcloud [default: /sensing/lidar/pointcloud]
      • output/objects [default: objects]
      • data_path [default: $(env HOME)/autoware_data]
      • node_name [default: lidar_centerpoint]
      • model_name [default: centerpoint_tiny]
      • model_path [default: $(var data_path)/$(var node_name)]
      • model_param_path [default: $(find-pkg-share autoware_lidar_centerpoint)/config/$(var model_name).param.yaml]
      • ml_package_param_path [default: $(var model_path)/$(var model_name)_ml_package.param.yaml]
      • class_remapper_param_path [default: $(var model_path)/detection_class_remapper.param.yaml]
      • common_param_path [default: $(find-pkg-share autoware_lidar_centerpoint)/config/centerpoint_common.param.yaml]
      • build_only [default: false]
      • use_pointcloud_container [default: false]
      • pointcloud_container_name [default: pointcloud_container]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_lidar_centerpoint at Robotics Stack Exchange

No version for distro iron showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_lidar_centerpoint package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

The autoware_lidar_centerpoint package

Additional Links

No additional links.

Maintainers

  • Kenzo Lobos-Tsunekawa
  • Amadeusz Szymko
  • Kotaro Uetake
  • Masato Saeki
  • Taekjin Lee
  • Kok Seang Tan

Authors

No additional authors.

autoware_lidar_centerpoint

Purpose

autoware_lidar_centerpoint is a package for detecting dynamic 3D objects.

Inner-workings / Algorithms

In this implementation, CenterPoint [1] uses a PointPillars-based [2] network to inference with TensorRT.

We trained the models using https://github.com/open-mmlab/mmdetection3d.

Inputs / Outputs

Input

Name Type Description
~/input/pointcloud sensor_msgs::msg::PointCloud2 input pointcloud

Output

Name Type Description
~/output/objects autoware_perception_msgs::msg::DetectedObjects detected objects
debug/cyclic_time_ms autoware_internal_debug_msgs::msg::Float64Stamped cyclic time (msg)
debug/processing_time_ms autoware_internal_debug_msgs::msg::Float64Stamped processing time (ms)

Parameters

ML Model Parameters

Note that these parameters are associated with ONNX file, predefined during the training phase. Be careful to change ONNX file as well when changing this parameter. Also, whenever you update the ONNX file, do NOT forget to check these values.

Name Type Default Value Description
model_params.class_names list[string] [“CAR”, “TRUCK”, “BUS”, “BICYCLE”, “PEDESTRIAN”] list of class names for model outputs
model_params.point_feature_size int 4 number of features per point in the point cloud
model_params.max_voxel_size int 40000 maximum number of voxels
model_params.point_cloud_range list[double] [-76.8, -76.8, -4.0, 76.8, 76.8, 6.0] detection range [min_x, min_y, min_z, max_x, max_y, max_z] [m]
model_params.voxel_size list[double] [0.32, 0.32, 10.0] size of each voxel [x, y, z] [m]
model_params.downsample_factor int 1 downsample factor for coordinates
model_params.encoder_in_feature_size int 9 number of input features to the encoder
model_params.has_variance bool false true if the model outputs pose variance as well as pose for each bbox
model_params.has_twist bool false true if the model outputs velocity as well as pose for each bbox

Core Parameters

Name Type Default Value Description
encoder_onnx_path string "" path to VoxelFeatureEncoder ONNX file
encoder_engine_path string "" path to VoxelFeatureEncoder TensorRT Engine file
head_onnx_path string "" path to DetectionHead ONNX file
head_engine_path string "" path to DetectionHead TensorRT Engine file
build_only bool false shutdown the node after TensorRT engine file is built
trt_precision string fp16 TensorRT inference precision: fp32 or fp16
post_process_params.score_thresholds list[double] [0.35, 0.35, 0.35, 0.35, 0.35] detected objects with score less than their label threshold are ignored.
post_process_params.yaw_norm_thresholds list[double] [0.3, 0.3, 0.3, 0.3, 0.0] An array of distance threshold values of norm of yaw [rad].
post_process_params.iou_nms_search_distance_2d double - If two objects are farther than the value, NMS isn’t applied.
post_process_params.iou_nms_threshold double - IoU threshold for the IoU-based Non Maximum Suppression
post_process_params.has_twist boolean false Indicates whether the model outputs twist value.
densification_params.world_frame_id string map the world frame id to fuse multi-frame pointcloud
densification_params.num_past_frames int 1 the number of past frames to fuse with the current frame

The build_only option

The autoware_lidar_centerpoint node has build_only option to build the TensorRT engine file from the ONNX file. Although it is preferred to move all the ROS parameters in .param.yaml file in Autoware Universe, the build_only option is not moved to the .param.yaml file for now, because it may be used as a flag to execute the build as a pre-task. You can execute with the following command:

ros2 launch autoware_lidar_centerpoint lidar_centerpoint.launch.xml model_name:=centerpoint_tiny model_path:=/home/autoware/autoware_data/lidar_centerpoint model_param_path:=$(ros2 pkg prefix autoware_lidar_centerpoint --share)/config/centerpoint_tiny.param.yaml build_only:=true

Assumptions / Known limits

  • The object.existence_probability is stored the value of classification confidence of a DNN, not probability.

Trained Models

You can download the onnx format of trained models by clicking on the links below.

Centerpoint was trained in nuScenes (~28k lidar frames) [8] and TIER IV’s internal database (~11k lidar frames) for 60 epochs. Centerpoint tiny was trained in Argoverse 2 (~110k lidar frames) [9] and TIER IV’s internal database (~11k lidar frames) for 20 epochs.

Training CenterPoint Model and Deploying to the Autoware

Overview

This guide provides instructions on training a CenterPoint model using the mmdetection3d repository and seamlessly deploying it within Autoware.

Installation

Install prerequisites

Step 1. Download and install Miniconda from the official website.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_lidar_centerpoint

0.47.0 (2025-08-11)

  • feat(autoware_lidar_centerpoint): add class-wise confidence thresholds to CenterPoint (#10881)

    • Add PreprocessCuda to CenterPoint
    • style(pre-commit): autofix
    • style(pre-commit): autofix
    • Add intensity preprocessing
    • style(pre-commit): autofix
    • Fix config_.point_feature_size_ typo
    • style(pre-commit): autofix
    • Fix point typo
    • style(pre-commit): autofix
    • Change score_threshold to score_thresholds
    • Use <autoware/cuda_utils/cuda_utils.hpp> for clear_async
    • Rename pre_ptr_ to pre_proc_ptr_
    • Remove unused getCacheSize() and getIdx
    • Use template in generateVoxels_random_kernel instead
    • style(pre-commit): autofix
    • Remove references in generateVoxels_random_kernel
    • Remove references in generateVoxels_random_kernel
    • style(pre-commit): autofix
    • Remove generateIntensityFeatures_kernel and add the case of 11 to ENCODER_IN_FEATURE_SIZE for generateFeatures_kernel
    • style(pre-commit): autofix
    • Add class-wise confidence thresholds to CenterPoint
    • style(pre-commit): autofix
    • Remov empty line changes
    • Update score_threshold to score_thresholds in REAMME
    • style(pre-commit): autofix
    • Change score_thresholds from pass by value to pass by reference
    • style(pre-commit): autofix
    • Add information about class names in scehema
    • Change vector<double> to vector<float>
    • Remove thrust and add stream_ to PostProcessCUDA
    • style(pre-commit): autofix
    • Fix incorrect initialization of score_thresholds_ vector
    • Fix postprocess CudaMemCpy error
    • Fix postprocess score_thresholds_d_ptr_ typing error
    • Fix score_thresholds typing in node.cpp
    • Static casting params.score_thresholds vector
    • style(pre-commit): autofix
    • Update perception/autoware_lidar_centerpoint/src/node.cpp
    • Update perception/autoware_lidar_centerpoint/include/autoware/lidar_centerpoint/centerpoint_config.hpp
    • Update centerpoint_config.hpp
    • Update node.cpp
    • Update score_thresholds_ to double since ros2 supports only double instead of float
    • style(pre-commit): autofix
    • Fix cuda memory and revert double score_thresholds_ to float score_thresholds_

    * style(pre-commit): autofix ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Taekjin LEE <<technolojin@gmail.com>>

  • feat(autoware_lidar_centerpoint): add Intensity support to CenterPoint (#10854)

    • Add PreprocessCuda to CenterPoint
    • style(pre-commit): autofix
    • style(pre-commit): autofix
    • Add intensity preprocessing
    • style(pre-commit): autofix
    • Fix config_.point_feature_size_ typo
    • style(pre-commit): autofix
    • Fix point typo
    • style(pre-commit): autofix
    • Use <autoware/cuda_utils/cuda_utils.hpp> for clear_async
    • Rename pre_ptr_ to pre_proc_ptr_
    • Remove unused getCacheSize() and getIdx
    • Use template in generateVoxels_random_kernel instead
    • style(pre-commit): autofix
    • Remove references in generateVoxels_random_kernel
    • Remove references in generateVoxels_random_kernel
    • style(pre-commit): autofix
    • Remove generateIntensityFeatures_kernel and add the case of 11 to ENCODER_IN_FEATURE_SIZE for generateFeatures_kernel
    • style(pre-commit): autofix

    * Remov empty line changes ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • Contributors: Kok Seang Tan

0.46.0 (2025-06-20)

  • Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base

  • chore(perception): delete maintainer name (#10816)

File truncated at 100 lines see the full file

Launch files

  • launch/lidar_centerpoint.launch.xml
      • input/pointcloud [default: /sensing/lidar/pointcloud]
      • output/objects [default: objects]
      • data_path [default: $(env HOME)/autoware_data]
      • node_name [default: lidar_centerpoint]
      • model_name [default: centerpoint_tiny]
      • model_path [default: $(var data_path)/$(var node_name)]
      • model_param_path [default: $(find-pkg-share autoware_lidar_centerpoint)/config/$(var model_name).param.yaml]
      • ml_package_param_path [default: $(var model_path)/$(var model_name)_ml_package.param.yaml]
      • class_remapper_param_path [default: $(var model_path)/detection_class_remapper.param.yaml]
      • common_param_path [default: $(find-pkg-share autoware_lidar_centerpoint)/config/centerpoint_common.param.yaml]
      • build_only [default: false]
      • use_pointcloud_container [default: false]
      • pointcloud_container_name [default: pointcloud_container]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_lidar_centerpoint at Robotics Stack Exchange

No version for distro melodic showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_lidar_centerpoint package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

The autoware_lidar_centerpoint package

Additional Links

No additional links.

Maintainers

  • Kenzo Lobos-Tsunekawa
  • Amadeusz Szymko
  • Kotaro Uetake
  • Masato Saeki
  • Taekjin Lee
  • Kok Seang Tan

Authors

No additional authors.

autoware_lidar_centerpoint

Purpose

autoware_lidar_centerpoint is a package for detecting dynamic 3D objects.

Inner-workings / Algorithms

In this implementation, CenterPoint [1] uses a PointPillars-based [2] network to inference with TensorRT.

We trained the models using https://github.com/open-mmlab/mmdetection3d.

Inputs / Outputs

Input

Name Type Description
~/input/pointcloud sensor_msgs::msg::PointCloud2 input pointcloud

Output

Name Type Description
~/output/objects autoware_perception_msgs::msg::DetectedObjects detected objects
debug/cyclic_time_ms autoware_internal_debug_msgs::msg::Float64Stamped cyclic time (msg)
debug/processing_time_ms autoware_internal_debug_msgs::msg::Float64Stamped processing time (ms)

Parameters

ML Model Parameters

Note that these parameters are associated with ONNX file, predefined during the training phase. Be careful to change ONNX file as well when changing this parameter. Also, whenever you update the ONNX file, do NOT forget to check these values.

Name Type Default Value Description
model_params.class_names list[string] [“CAR”, “TRUCK”, “BUS”, “BICYCLE”, “PEDESTRIAN”] list of class names for model outputs
model_params.point_feature_size int 4 number of features per point in the point cloud
model_params.max_voxel_size int 40000 maximum number of voxels
model_params.point_cloud_range list[double] [-76.8, -76.8, -4.0, 76.8, 76.8, 6.0] detection range [min_x, min_y, min_z, max_x, max_y, max_z] [m]
model_params.voxel_size list[double] [0.32, 0.32, 10.0] size of each voxel [x, y, z] [m]
model_params.downsample_factor int 1 downsample factor for coordinates
model_params.encoder_in_feature_size int 9 number of input features to the encoder
model_params.has_variance bool false true if the model outputs pose variance as well as pose for each bbox
model_params.has_twist bool false true if the model outputs velocity as well as pose for each bbox

Core Parameters

Name Type Default Value Description
encoder_onnx_path string "" path to VoxelFeatureEncoder ONNX file
encoder_engine_path string "" path to VoxelFeatureEncoder TensorRT Engine file
head_onnx_path string "" path to DetectionHead ONNX file
head_engine_path string "" path to DetectionHead TensorRT Engine file
build_only bool false shutdown the node after TensorRT engine file is built
trt_precision string fp16 TensorRT inference precision: fp32 or fp16
post_process_params.score_thresholds list[double] [0.35, 0.35, 0.35, 0.35, 0.35] detected objects with score less than their label threshold are ignored.
post_process_params.yaw_norm_thresholds list[double] [0.3, 0.3, 0.3, 0.3, 0.0] An array of distance threshold values of norm of yaw [rad].
post_process_params.iou_nms_search_distance_2d double - If two objects are farther than the value, NMS isn’t applied.
post_process_params.iou_nms_threshold double - IoU threshold for the IoU-based Non Maximum Suppression
post_process_params.has_twist boolean false Indicates whether the model outputs twist value.
densification_params.world_frame_id string map the world frame id to fuse multi-frame pointcloud
densification_params.num_past_frames int 1 the number of past frames to fuse with the current frame

The build_only option

The autoware_lidar_centerpoint node has build_only option to build the TensorRT engine file from the ONNX file. Although it is preferred to move all the ROS parameters in .param.yaml file in Autoware Universe, the build_only option is not moved to the .param.yaml file for now, because it may be used as a flag to execute the build as a pre-task. You can execute with the following command:

ros2 launch autoware_lidar_centerpoint lidar_centerpoint.launch.xml model_name:=centerpoint_tiny model_path:=/home/autoware/autoware_data/lidar_centerpoint model_param_path:=$(ros2 pkg prefix autoware_lidar_centerpoint --share)/config/centerpoint_tiny.param.yaml build_only:=true

Assumptions / Known limits

  • The object.existence_probability is stored the value of classification confidence of a DNN, not probability.

Trained Models

You can download the onnx format of trained models by clicking on the links below.

Centerpoint was trained in nuScenes (~28k lidar frames) [8] and TIER IV’s internal database (~11k lidar frames) for 60 epochs. Centerpoint tiny was trained in Argoverse 2 (~110k lidar frames) [9] and TIER IV’s internal database (~11k lidar frames) for 20 epochs.

Training CenterPoint Model and Deploying to the Autoware

Overview

This guide provides instructions on training a CenterPoint model using the mmdetection3d repository and seamlessly deploying it within Autoware.

Installation

Install prerequisites

Step 1. Download and install Miniconda from the official website.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_lidar_centerpoint

0.47.0 (2025-08-11)

  • feat(autoware_lidar_centerpoint): add class-wise confidence thresholds to CenterPoint (#10881)

    • Add PreprocessCuda to CenterPoint
    • style(pre-commit): autofix
    • style(pre-commit): autofix
    • Add intensity preprocessing
    • style(pre-commit): autofix
    • Fix config_.point_feature_size_ typo
    • style(pre-commit): autofix
    • Fix point typo
    • style(pre-commit): autofix
    • Change score_threshold to score_thresholds
    • Use <autoware/cuda_utils/cuda_utils.hpp> for clear_async
    • Rename pre_ptr_ to pre_proc_ptr_
    • Remove unused getCacheSize() and getIdx
    • Use template in generateVoxels_random_kernel instead
    • style(pre-commit): autofix
    • Remove references in generateVoxels_random_kernel
    • Remove references in generateVoxels_random_kernel
    • style(pre-commit): autofix
    • Remove generateIntensityFeatures_kernel and add the case of 11 to ENCODER_IN_FEATURE_SIZE for generateFeatures_kernel
    • style(pre-commit): autofix
    • Add class-wise confidence thresholds to CenterPoint
    • style(pre-commit): autofix
    • Remov empty line changes
    • Update score_threshold to score_thresholds in REAMME
    • style(pre-commit): autofix
    • Change score_thresholds from pass by value to pass by reference
    • style(pre-commit): autofix
    • Add information about class names in scehema
    • Change vector<double> to vector<float>
    • Remove thrust and add stream_ to PostProcessCUDA
    • style(pre-commit): autofix
    • Fix incorrect initialization of score_thresholds_ vector
    • Fix postprocess CudaMemCpy error
    • Fix postprocess score_thresholds_d_ptr_ typing error
    • Fix score_thresholds typing in node.cpp
    • Static casting params.score_thresholds vector
    • style(pre-commit): autofix
    • Update perception/autoware_lidar_centerpoint/src/node.cpp
    • Update perception/autoware_lidar_centerpoint/include/autoware/lidar_centerpoint/centerpoint_config.hpp
    • Update centerpoint_config.hpp
    • Update node.cpp
    • Update score_thresholds_ to double since ros2 supports only double instead of float
    • style(pre-commit): autofix
    • Fix cuda memory and revert double score_thresholds_ to float score_thresholds_

    * style(pre-commit): autofix ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Taekjin LEE <<technolojin@gmail.com>>

  • feat(autoware_lidar_centerpoint): add Intensity support to CenterPoint (#10854)

    • Add PreprocessCuda to CenterPoint
    • style(pre-commit): autofix
    • style(pre-commit): autofix
    • Add intensity preprocessing
    • style(pre-commit): autofix
    • Fix config_.point_feature_size_ typo
    • style(pre-commit): autofix
    • Fix point typo
    • style(pre-commit): autofix
    • Use <autoware/cuda_utils/cuda_utils.hpp> for clear_async
    • Rename pre_ptr_ to pre_proc_ptr_
    • Remove unused getCacheSize() and getIdx
    • Use template in generateVoxels_random_kernel instead
    • style(pre-commit): autofix
    • Remove references in generateVoxels_random_kernel
    • Remove references in generateVoxels_random_kernel
    • style(pre-commit): autofix
    • Remove generateIntensityFeatures_kernel and add the case of 11 to ENCODER_IN_FEATURE_SIZE for generateFeatures_kernel
    • style(pre-commit): autofix

    * Remov empty line changes ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • Contributors: Kok Seang Tan

0.46.0 (2025-06-20)

  • Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base

  • chore(perception): delete maintainer name (#10816)

File truncated at 100 lines see the full file

Launch files

  • launch/lidar_centerpoint.launch.xml
      • input/pointcloud [default: /sensing/lidar/pointcloud]
      • output/objects [default: objects]
      • data_path [default: $(env HOME)/autoware_data]
      • node_name [default: lidar_centerpoint]
      • model_name [default: centerpoint_tiny]
      • model_path [default: $(var data_path)/$(var node_name)]
      • model_param_path [default: $(find-pkg-share autoware_lidar_centerpoint)/config/$(var model_name).param.yaml]
      • ml_package_param_path [default: $(var model_path)/$(var model_name)_ml_package.param.yaml]
      • class_remapper_param_path [default: $(var model_path)/detection_class_remapper.param.yaml]
      • common_param_path [default: $(find-pkg-share autoware_lidar_centerpoint)/config/centerpoint_common.param.yaml]
      • build_only [default: false]
      • use_pointcloud_container [default: false]
      • pointcloud_container_name [default: pointcloud_container]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_lidar_centerpoint at Robotics Stack Exchange

No version for distro noetic showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_lidar_centerpoint package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

The autoware_lidar_centerpoint package

Additional Links

No additional links.

Maintainers

  • Kenzo Lobos-Tsunekawa
  • Amadeusz Szymko
  • Kotaro Uetake
  • Masato Saeki
  • Taekjin Lee
  • Kok Seang Tan

Authors

No additional authors.

autoware_lidar_centerpoint

Purpose

autoware_lidar_centerpoint is a package for detecting dynamic 3D objects.

Inner-workings / Algorithms

In this implementation, CenterPoint [1] uses a PointPillars-based [2] network to inference with TensorRT.

We trained the models using https://github.com/open-mmlab/mmdetection3d.

Inputs / Outputs

Input

Name Type Description
~/input/pointcloud sensor_msgs::msg::PointCloud2 input pointcloud

Output

Name Type Description
~/output/objects autoware_perception_msgs::msg::DetectedObjects detected objects
debug/cyclic_time_ms autoware_internal_debug_msgs::msg::Float64Stamped cyclic time (msg)
debug/processing_time_ms autoware_internal_debug_msgs::msg::Float64Stamped processing time (ms)

Parameters

ML Model Parameters

Note that these parameters are associated with ONNX file, predefined during the training phase. Be careful to change ONNX file as well when changing this parameter. Also, whenever you update the ONNX file, do NOT forget to check these values.

Name Type Default Value Description
model_params.class_names list[string] [“CAR”, “TRUCK”, “BUS”, “BICYCLE”, “PEDESTRIAN”] list of class names for model outputs
model_params.point_feature_size int 4 number of features per point in the point cloud
model_params.max_voxel_size int 40000 maximum number of voxels
model_params.point_cloud_range list[double] [-76.8, -76.8, -4.0, 76.8, 76.8, 6.0] detection range [min_x, min_y, min_z, max_x, max_y, max_z] [m]
model_params.voxel_size list[double] [0.32, 0.32, 10.0] size of each voxel [x, y, z] [m]
model_params.downsample_factor int 1 downsample factor for coordinates
model_params.encoder_in_feature_size int 9 number of input features to the encoder
model_params.has_variance bool false true if the model outputs pose variance as well as pose for each bbox
model_params.has_twist bool false true if the model outputs velocity as well as pose for each bbox

Core Parameters

Name Type Default Value Description
encoder_onnx_path string "" path to VoxelFeatureEncoder ONNX file
encoder_engine_path string "" path to VoxelFeatureEncoder TensorRT Engine file
head_onnx_path string "" path to DetectionHead ONNX file
head_engine_path string "" path to DetectionHead TensorRT Engine file
build_only bool false shutdown the node after TensorRT engine file is built
trt_precision string fp16 TensorRT inference precision: fp32 or fp16
post_process_params.score_thresholds list[double] [0.35, 0.35, 0.35, 0.35, 0.35] detected objects with score less than their label threshold are ignored.
post_process_params.yaw_norm_thresholds list[double] [0.3, 0.3, 0.3, 0.3, 0.0] An array of distance threshold values of norm of yaw [rad].
post_process_params.iou_nms_search_distance_2d double - If two objects are farther than the value, NMS isn’t applied.
post_process_params.iou_nms_threshold double - IoU threshold for the IoU-based Non Maximum Suppression
post_process_params.has_twist boolean false Indicates whether the model outputs twist value.
densification_params.world_frame_id string map the world frame id to fuse multi-frame pointcloud
densification_params.num_past_frames int 1 the number of past frames to fuse with the current frame

The build_only option

The autoware_lidar_centerpoint node has build_only option to build the TensorRT engine file from the ONNX file. Although it is preferred to move all the ROS parameters in .param.yaml file in Autoware Universe, the build_only option is not moved to the .param.yaml file for now, because it may be used as a flag to execute the build as a pre-task. You can execute with the following command:

ros2 launch autoware_lidar_centerpoint lidar_centerpoint.launch.xml model_name:=centerpoint_tiny model_path:=/home/autoware/autoware_data/lidar_centerpoint model_param_path:=$(ros2 pkg prefix autoware_lidar_centerpoint --share)/config/centerpoint_tiny.param.yaml build_only:=true

Assumptions / Known limits

  • The object.existence_probability is stored the value of classification confidence of a DNN, not probability.

Trained Models

You can download the onnx format of trained models by clicking on the links below.

Centerpoint was trained in nuScenes (~28k lidar frames) [8] and TIER IV’s internal database (~11k lidar frames) for 60 epochs. Centerpoint tiny was trained in Argoverse 2 (~110k lidar frames) [9] and TIER IV’s internal database (~11k lidar frames) for 20 epochs.

Training CenterPoint Model and Deploying to the Autoware

Overview

This guide provides instructions on training a CenterPoint model using the mmdetection3d repository and seamlessly deploying it within Autoware.

Installation

Install prerequisites

Step 1. Download and install Miniconda from the official website.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_lidar_centerpoint

0.47.0 (2025-08-11)

  • feat(autoware_lidar_centerpoint): add class-wise confidence thresholds to CenterPoint (#10881)

    • Add PreprocessCuda to CenterPoint
    • style(pre-commit): autofix
    • style(pre-commit): autofix
    • Add intensity preprocessing
    • style(pre-commit): autofix
    • Fix config_.point_feature_size_ typo
    • style(pre-commit): autofix
    • Fix point typo
    • style(pre-commit): autofix
    • Change score_threshold to score_thresholds
    • Use <autoware/cuda_utils/cuda_utils.hpp> for clear_async
    • Rename pre_ptr_ to pre_proc_ptr_
    • Remove unused getCacheSize() and getIdx
    • Use template in generateVoxels_random_kernel instead
    • style(pre-commit): autofix
    • Remove references in generateVoxels_random_kernel
    • Remove references in generateVoxels_random_kernel
    • style(pre-commit): autofix
    • Remove generateIntensityFeatures_kernel and add the case of 11 to ENCODER_IN_FEATURE_SIZE for generateFeatures_kernel
    • style(pre-commit): autofix
    • Add class-wise confidence thresholds to CenterPoint
    • style(pre-commit): autofix
    • Remov empty line changes
    • Update score_threshold to score_thresholds in REAMME
    • style(pre-commit): autofix
    • Change score_thresholds from pass by value to pass by reference
    • style(pre-commit): autofix
    • Add information about class names in scehema
    • Change vector<double> to vector<float>
    • Remove thrust and add stream_ to PostProcessCUDA
    • style(pre-commit): autofix
    • Fix incorrect initialization of score_thresholds_ vector
    • Fix postprocess CudaMemCpy error
    • Fix postprocess score_thresholds_d_ptr_ typing error
    • Fix score_thresholds typing in node.cpp
    • Static casting params.score_thresholds vector
    • style(pre-commit): autofix
    • Update perception/autoware_lidar_centerpoint/src/node.cpp
    • Update perception/autoware_lidar_centerpoint/include/autoware/lidar_centerpoint/centerpoint_config.hpp
    • Update centerpoint_config.hpp
    • Update node.cpp
    • Update score_thresholds_ to double since ros2 supports only double instead of float
    • style(pre-commit): autofix
    • Fix cuda memory and revert double score_thresholds_ to float score_thresholds_

    * style(pre-commit): autofix ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Taekjin LEE <<technolojin@gmail.com>>

  • feat(autoware_lidar_centerpoint): add Intensity support to CenterPoint (#10854)

    • Add PreprocessCuda to CenterPoint
    • style(pre-commit): autofix
    • style(pre-commit): autofix
    • Add intensity preprocessing
    • style(pre-commit): autofix
    • Fix config_.point_feature_size_ typo
    • style(pre-commit): autofix
    • Fix point typo
    • style(pre-commit): autofix
    • Use <autoware/cuda_utils/cuda_utils.hpp> for clear_async
    • Rename pre_ptr_ to pre_proc_ptr_
    • Remove unused getCacheSize() and getIdx
    • Use template in generateVoxels_random_kernel instead
    • style(pre-commit): autofix
    • Remove references in generateVoxels_random_kernel
    • Remove references in generateVoxels_random_kernel
    • style(pre-commit): autofix
    • Remove generateIntensityFeatures_kernel and add the case of 11 to ENCODER_IN_FEATURE_SIZE for generateFeatures_kernel
    • style(pre-commit): autofix

    * Remov empty line changes ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

  • Contributors: Kok Seang Tan

0.46.0 (2025-06-20)

  • Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base

  • chore(perception): delete maintainer name (#10816)

File truncated at 100 lines see the full file

Launch files

  • launch/lidar_centerpoint.launch.xml
      • input/pointcloud [default: /sensing/lidar/pointcloud]
      • output/objects [default: objects]
      • data_path [default: $(env HOME)/autoware_data]
      • node_name [default: lidar_centerpoint]
      • model_name [default: centerpoint_tiny]
      • model_path [default: $(var data_path)/$(var node_name)]
      • model_param_path [default: $(find-pkg-share autoware_lidar_centerpoint)/config/$(var model_name).param.yaml]
      • ml_package_param_path [default: $(var model_path)/$(var model_name)_ml_package.param.yaml]
      • class_remapper_param_path [default: $(var model_path)/detection_class_remapper.param.yaml]
      • common_param_path [default: $(find-pkg-share autoware_lidar_centerpoint)/config/centerpoint_common.param.yaml]
      • build_only [default: false]
      • use_pointcloud_container [default: false]
      • pointcloud_container_name [default: pointcloud_container]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_lidar_centerpoint at Robotics Stack Exchange