No version for distro humble showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_lidar_frnet package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_camera_streampetr autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_frnet autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_ptv3 autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_bevformer autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_trajectory_adapter autoware_trajectory_concatenator autoware_trajectory_modifier autoware_trajectory_optimizer autoware_trajectory_ranker autoware_trajectory_safety_filter autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_roundabout_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_calibration_status_classifier autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.0.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-09-30
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

LiDAR segmentation based on FRNet

Additional Links

No additional links.

Maintainers

  • Amadeusz Szymko

Authors

  • Amadeusz Szymko

autoware_lidar_frnet

Purpose

The autoware_lidar_frnet package is used for 3D semantic segmentation based on LiDAR data (x, y, z, intensity).

Inner-workings / Algorithms

The implementation is based on the FRNet [1] project. It uses TensorRT library for data processing and network inference.

We trained the models using AWML [2].

Inputs / Outputs

Input

Name Type Description
~/input/pointcloud sensor_msgs::msg::PointCloud2 Input pointcloud.

Output

Name Type Description
~/output/pointcloud/segmentation sensor_msgs::msg::PointCloud2 XYZ cloud with class ID field.
~/output/pointcloud/visualization sensor_msgs::msg::PointCloud2 XYZ cloud with RGB field.
~/output/pointcloud/filtered sensor_msgs::msg::PointCloud2 Input format cloud after removing specified point’s class.
debug/cyclic_time_ms autoware_internal_debug_msgs::msg::Float64Stamped Cyclic time (ms).
debug/pipeline_latency_ms autoware_internal_debug_msgs::msg::Float64Stamped Pipeline latency time (ms).
debug/processing_time/preprocess_ms autoware_internal_debug_msgs::msg::Float64Stamped Preprocess (ms).
debug/processing_time/inference_ms autoware_internal_debug_msgs::msg::Float64Stamped Inference time (ms).
debug/processing_time/postprocess_ms autoware_internal_debug_msgs::msg::Float64Stamped Postprocess time (ms).
debug/processing_time/total_ms autoware_internal_debug_msgs::msg::Float64Stamped Total processing time (ms).
/diagnostics diagnostic_msgs::msg::DiagnosticArray Node diagnostics with respect to processing time constraints

Parameters

FRNet node

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/frnet.schema.json”) }}

FRNet model

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/ml_package_frnet.schema.json”) }}

FRNet diagnostics

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/diagnostics_frnet.schema.json”) }}

The build_only option

The autoware_lidar_frnet node has build_only option to build the TensorRT engine file from the ONNX file.

ros2 launch autoware_lidar_frnet lidar_frnet.launch.xml build_only:=true

Assumptions / Known limits

This library operates on raw cloud data (bytes). It is assumed that the input pointcloud message has XYZIRC format:

[
  sensor_msgs.msg.PointField(name='x', offset=0, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='y', offset=4, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='z', offset=8, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='intensity', offset=12, datatype=2, count=1),
  sensor_msgs.msg.PointField(name='ring', offset=13, datatype=2, count=1),
  sensor_msgs.msg.PointField(name='channel', offset=14, datatype=4, count=1)
]

This input may consist of other fields as well - shown format is required minimum. For debug purposes, you can validate your pointcloud topic using simple command:

ros2 topic echo <input_topic> --field fields

Trained Models

The model was trained on the NuScenes dataset and is available in the Autoware artifacts.

[1] X. Xu, L. Kong, H. Shuai and Q. Liu, “FRNet: Frustum-Range Networks for Scalable LiDAR Segmentation” in IEEE Transactions on Image Processing, vol. 34, pp. 2173-2186, 2025, doi: 10.1109/TIP.2025.3550011.

[2] https://github.com/tier4/AWML.git

[3] https://xiangxu-0103.github.io/FRNet

CHANGELOG
No CHANGELOG found.

Launch files

  • launch/lidar_frnet.launch.xml
      • input/pointcloud [default: /sensing/lidar/top/pointcloud]
      • output/pointcloud/segmentation [default: segmentation]
      • output/pointcloud/visualization [default: visualization]
      • output/pointcloud/filtered [default: filtered]
      • data_path [default: $(env HOME)/autoware_data]
      • model_name [default: frnet]
      • model_path [default: $(var data_path)/lidar_frnet]
      • model_param_path [default: $(find-pkg-share autoware_lidar_frnet)/config/$(var model_name).param.yaml]
      • ml_package_param_path [default: $(var model_path)/ml_package_$(var model_name).param.yaml]
      • diagnostics_param_path [default: $(find-pkg-share autoware_lidar_frnet)/config/diagnostics_frnet.param.yaml]
      • build_only [default: false]
      • use_pointcloud_container [default: false]
      • pointcloud_container_name [default: pointcloud_container]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_lidar_frnet at Robotics Stack Exchange

No version for distro jazzy showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_lidar_frnet package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_camera_streampetr autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_frnet autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_ptv3 autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_bevformer autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_trajectory_adapter autoware_trajectory_concatenator autoware_trajectory_modifier autoware_trajectory_optimizer autoware_trajectory_ranker autoware_trajectory_safety_filter autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_roundabout_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_calibration_status_classifier autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.0.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-09-30
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

LiDAR segmentation based on FRNet

Additional Links

No additional links.

Maintainers

  • Amadeusz Szymko

Authors

  • Amadeusz Szymko

autoware_lidar_frnet

Purpose

The autoware_lidar_frnet package is used for 3D semantic segmentation based on LiDAR data (x, y, z, intensity).

Inner-workings / Algorithms

The implementation is based on the FRNet [1] project. It uses TensorRT library for data processing and network inference.

We trained the models using AWML [2].

Inputs / Outputs

Input

Name Type Description
~/input/pointcloud sensor_msgs::msg::PointCloud2 Input pointcloud.

Output

Name Type Description
~/output/pointcloud/segmentation sensor_msgs::msg::PointCloud2 XYZ cloud with class ID field.
~/output/pointcloud/visualization sensor_msgs::msg::PointCloud2 XYZ cloud with RGB field.
~/output/pointcloud/filtered sensor_msgs::msg::PointCloud2 Input format cloud after removing specified point’s class.
debug/cyclic_time_ms autoware_internal_debug_msgs::msg::Float64Stamped Cyclic time (ms).
debug/pipeline_latency_ms autoware_internal_debug_msgs::msg::Float64Stamped Pipeline latency time (ms).
debug/processing_time/preprocess_ms autoware_internal_debug_msgs::msg::Float64Stamped Preprocess (ms).
debug/processing_time/inference_ms autoware_internal_debug_msgs::msg::Float64Stamped Inference time (ms).
debug/processing_time/postprocess_ms autoware_internal_debug_msgs::msg::Float64Stamped Postprocess time (ms).
debug/processing_time/total_ms autoware_internal_debug_msgs::msg::Float64Stamped Total processing time (ms).
/diagnostics diagnostic_msgs::msg::DiagnosticArray Node diagnostics with respect to processing time constraints

Parameters

FRNet node

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/frnet.schema.json”) }}

FRNet model

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/ml_package_frnet.schema.json”) }}

FRNet diagnostics

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/diagnostics_frnet.schema.json”) }}

The build_only option

The autoware_lidar_frnet node has build_only option to build the TensorRT engine file from the ONNX file.

ros2 launch autoware_lidar_frnet lidar_frnet.launch.xml build_only:=true

Assumptions / Known limits

This library operates on raw cloud data (bytes). It is assumed that the input pointcloud message has XYZIRC format:

[
  sensor_msgs.msg.PointField(name='x', offset=0, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='y', offset=4, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='z', offset=8, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='intensity', offset=12, datatype=2, count=1),
  sensor_msgs.msg.PointField(name='ring', offset=13, datatype=2, count=1),
  sensor_msgs.msg.PointField(name='channel', offset=14, datatype=4, count=1)
]

This input may consist of other fields as well - shown format is required minimum. For debug purposes, you can validate your pointcloud topic using simple command:

ros2 topic echo <input_topic> --field fields

Trained Models

The model was trained on the NuScenes dataset and is available in the Autoware artifacts.

[1] X. Xu, L. Kong, H. Shuai and Q. Liu, “FRNet: Frustum-Range Networks for Scalable LiDAR Segmentation” in IEEE Transactions on Image Processing, vol. 34, pp. 2173-2186, 2025, doi: 10.1109/TIP.2025.3550011.

[2] https://github.com/tier4/AWML.git

[3] https://xiangxu-0103.github.io/FRNet

CHANGELOG
No CHANGELOG found.

Launch files

  • launch/lidar_frnet.launch.xml
      • input/pointcloud [default: /sensing/lidar/top/pointcloud]
      • output/pointcloud/segmentation [default: segmentation]
      • output/pointcloud/visualization [default: visualization]
      • output/pointcloud/filtered [default: filtered]
      • data_path [default: $(env HOME)/autoware_data]
      • model_name [default: frnet]
      • model_path [default: $(var data_path)/lidar_frnet]
      • model_param_path [default: $(find-pkg-share autoware_lidar_frnet)/config/$(var model_name).param.yaml]
      • ml_package_param_path [default: $(var model_path)/ml_package_$(var model_name).param.yaml]
      • diagnostics_param_path [default: $(find-pkg-share autoware_lidar_frnet)/config/diagnostics_frnet.param.yaml]
      • build_only [default: false]
      • use_pointcloud_container [default: false]
      • pointcloud_container_name [default: pointcloud_container]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_lidar_frnet at Robotics Stack Exchange

No version for distro kilted showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_lidar_frnet package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_camera_streampetr autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_frnet autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_ptv3 autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_bevformer autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_trajectory_adapter autoware_trajectory_concatenator autoware_trajectory_modifier autoware_trajectory_optimizer autoware_trajectory_ranker autoware_trajectory_safety_filter autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_roundabout_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_calibration_status_classifier autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.0.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-09-30
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

LiDAR segmentation based on FRNet

Additional Links

No additional links.

Maintainers

  • Amadeusz Szymko

Authors

  • Amadeusz Szymko

autoware_lidar_frnet

Purpose

The autoware_lidar_frnet package is used for 3D semantic segmentation based on LiDAR data (x, y, z, intensity).

Inner-workings / Algorithms

The implementation is based on the FRNet [1] project. It uses TensorRT library for data processing and network inference.

We trained the models using AWML [2].

Inputs / Outputs

Input

Name Type Description
~/input/pointcloud sensor_msgs::msg::PointCloud2 Input pointcloud.

Output

Name Type Description
~/output/pointcloud/segmentation sensor_msgs::msg::PointCloud2 XYZ cloud with class ID field.
~/output/pointcloud/visualization sensor_msgs::msg::PointCloud2 XYZ cloud with RGB field.
~/output/pointcloud/filtered sensor_msgs::msg::PointCloud2 Input format cloud after removing specified point’s class.
debug/cyclic_time_ms autoware_internal_debug_msgs::msg::Float64Stamped Cyclic time (ms).
debug/pipeline_latency_ms autoware_internal_debug_msgs::msg::Float64Stamped Pipeline latency time (ms).
debug/processing_time/preprocess_ms autoware_internal_debug_msgs::msg::Float64Stamped Preprocess (ms).
debug/processing_time/inference_ms autoware_internal_debug_msgs::msg::Float64Stamped Inference time (ms).
debug/processing_time/postprocess_ms autoware_internal_debug_msgs::msg::Float64Stamped Postprocess time (ms).
debug/processing_time/total_ms autoware_internal_debug_msgs::msg::Float64Stamped Total processing time (ms).
/diagnostics diagnostic_msgs::msg::DiagnosticArray Node diagnostics with respect to processing time constraints

Parameters

FRNet node

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/frnet.schema.json”) }}

FRNet model

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/ml_package_frnet.schema.json”) }}

FRNet diagnostics

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/diagnostics_frnet.schema.json”) }}

The build_only option

The autoware_lidar_frnet node has build_only option to build the TensorRT engine file from the ONNX file.

ros2 launch autoware_lidar_frnet lidar_frnet.launch.xml build_only:=true

Assumptions / Known limits

This library operates on raw cloud data (bytes). It is assumed that the input pointcloud message has XYZIRC format:

[
  sensor_msgs.msg.PointField(name='x', offset=0, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='y', offset=4, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='z', offset=8, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='intensity', offset=12, datatype=2, count=1),
  sensor_msgs.msg.PointField(name='ring', offset=13, datatype=2, count=1),
  sensor_msgs.msg.PointField(name='channel', offset=14, datatype=4, count=1)
]

This input may consist of other fields as well - shown format is required minimum. For debug purposes, you can validate your pointcloud topic using simple command:

ros2 topic echo <input_topic> --field fields

Trained Models

The model was trained on the NuScenes dataset and is available in the Autoware artifacts.

[1] X. Xu, L. Kong, H. Shuai and Q. Liu, “FRNet: Frustum-Range Networks for Scalable LiDAR Segmentation” in IEEE Transactions on Image Processing, vol. 34, pp. 2173-2186, 2025, doi: 10.1109/TIP.2025.3550011.

[2] https://github.com/tier4/AWML.git

[3] https://xiangxu-0103.github.io/FRNet

CHANGELOG
No CHANGELOG found.

Launch files

  • launch/lidar_frnet.launch.xml
      • input/pointcloud [default: /sensing/lidar/top/pointcloud]
      • output/pointcloud/segmentation [default: segmentation]
      • output/pointcloud/visualization [default: visualization]
      • output/pointcloud/filtered [default: filtered]
      • data_path [default: $(env HOME)/autoware_data]
      • model_name [default: frnet]
      • model_path [default: $(var data_path)/lidar_frnet]
      • model_param_path [default: $(find-pkg-share autoware_lidar_frnet)/config/$(var model_name).param.yaml]
      • ml_package_param_path [default: $(var model_path)/ml_package_$(var model_name).param.yaml]
      • diagnostics_param_path [default: $(find-pkg-share autoware_lidar_frnet)/config/diagnostics_frnet.param.yaml]
      • build_only [default: false]
      • use_pointcloud_container [default: false]
      • pointcloud_container_name [default: pointcloud_container]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_lidar_frnet at Robotics Stack Exchange

No version for distro rolling showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_lidar_frnet package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_camera_streampetr autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_frnet autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_ptv3 autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_bevformer autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_trajectory_adapter autoware_trajectory_concatenator autoware_trajectory_modifier autoware_trajectory_optimizer autoware_trajectory_ranker autoware_trajectory_safety_filter autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_roundabout_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_calibration_status_classifier autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.0.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-09-30
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

LiDAR segmentation based on FRNet

Additional Links

No additional links.

Maintainers

  • Amadeusz Szymko

Authors

  • Amadeusz Szymko

autoware_lidar_frnet

Purpose

The autoware_lidar_frnet package is used for 3D semantic segmentation based on LiDAR data (x, y, z, intensity).

Inner-workings / Algorithms

The implementation is based on the FRNet [1] project. It uses TensorRT library for data processing and network inference.

We trained the models using AWML [2].

Inputs / Outputs

Input

Name Type Description
~/input/pointcloud sensor_msgs::msg::PointCloud2 Input pointcloud.

Output

Name Type Description
~/output/pointcloud/segmentation sensor_msgs::msg::PointCloud2 XYZ cloud with class ID field.
~/output/pointcloud/visualization sensor_msgs::msg::PointCloud2 XYZ cloud with RGB field.
~/output/pointcloud/filtered sensor_msgs::msg::PointCloud2 Input format cloud after removing specified point’s class.
debug/cyclic_time_ms autoware_internal_debug_msgs::msg::Float64Stamped Cyclic time (ms).
debug/pipeline_latency_ms autoware_internal_debug_msgs::msg::Float64Stamped Pipeline latency time (ms).
debug/processing_time/preprocess_ms autoware_internal_debug_msgs::msg::Float64Stamped Preprocess (ms).
debug/processing_time/inference_ms autoware_internal_debug_msgs::msg::Float64Stamped Inference time (ms).
debug/processing_time/postprocess_ms autoware_internal_debug_msgs::msg::Float64Stamped Postprocess time (ms).
debug/processing_time/total_ms autoware_internal_debug_msgs::msg::Float64Stamped Total processing time (ms).
/diagnostics diagnostic_msgs::msg::DiagnosticArray Node diagnostics with respect to processing time constraints

Parameters

FRNet node

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/frnet.schema.json”) }}

FRNet model

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/ml_package_frnet.schema.json”) }}

FRNet diagnostics

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/diagnostics_frnet.schema.json”) }}

The build_only option

The autoware_lidar_frnet node has build_only option to build the TensorRT engine file from the ONNX file.

ros2 launch autoware_lidar_frnet lidar_frnet.launch.xml build_only:=true

Assumptions / Known limits

This library operates on raw cloud data (bytes). It is assumed that the input pointcloud message has XYZIRC format:

[
  sensor_msgs.msg.PointField(name='x', offset=0, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='y', offset=4, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='z', offset=8, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='intensity', offset=12, datatype=2, count=1),
  sensor_msgs.msg.PointField(name='ring', offset=13, datatype=2, count=1),
  sensor_msgs.msg.PointField(name='channel', offset=14, datatype=4, count=1)
]

This input may consist of other fields as well - shown format is required minimum. For debug purposes, you can validate your pointcloud topic using simple command:

ros2 topic echo <input_topic> --field fields

Trained Models

The model was trained on the NuScenes dataset and is available in the Autoware artifacts.

[1] X. Xu, L. Kong, H. Shuai and Q. Liu, “FRNet: Frustum-Range Networks for Scalable LiDAR Segmentation” in IEEE Transactions on Image Processing, vol. 34, pp. 2173-2186, 2025, doi: 10.1109/TIP.2025.3550011.

[2] https://github.com/tier4/AWML.git

[3] https://xiangxu-0103.github.io/FRNet

CHANGELOG
No CHANGELOG found.

Launch files

  • launch/lidar_frnet.launch.xml
      • input/pointcloud [default: /sensing/lidar/top/pointcloud]
      • output/pointcloud/segmentation [default: segmentation]
      • output/pointcloud/visualization [default: visualization]
      • output/pointcloud/filtered [default: filtered]
      • data_path [default: $(env HOME)/autoware_data]
      • model_name [default: frnet]
      • model_path [default: $(var data_path)/lidar_frnet]
      • model_param_path [default: $(find-pkg-share autoware_lidar_frnet)/config/$(var model_name).param.yaml]
      • ml_package_param_path [default: $(var model_path)/ml_package_$(var model_name).param.yaml]
      • diagnostics_param_path [default: $(find-pkg-share autoware_lidar_frnet)/config/diagnostics_frnet.param.yaml]
      • build_only [default: false]
      • use_pointcloud_container [default: false]
      • pointcloud_container_name [default: pointcloud_container]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_lidar_frnet at Robotics Stack Exchange

Package symbol

autoware_lidar_frnet package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_camera_streampetr autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_frnet autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_ptv3 autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_bevformer autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_trajectory_adapter autoware_trajectory_concatenator autoware_trajectory_modifier autoware_trajectory_optimizer autoware_trajectory_ranker autoware_trajectory_safety_filter autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_roundabout_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_calibration_status_classifier autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.0.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-09-30
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

LiDAR segmentation based on FRNet

Additional Links

No additional links.

Maintainers

  • Amadeusz Szymko

Authors

  • Amadeusz Szymko

autoware_lidar_frnet

Purpose

The autoware_lidar_frnet package is used for 3D semantic segmentation based on LiDAR data (x, y, z, intensity).

Inner-workings / Algorithms

The implementation is based on the FRNet [1] project. It uses TensorRT library for data processing and network inference.

We trained the models using AWML [2].

Inputs / Outputs

Input

Name Type Description
~/input/pointcloud sensor_msgs::msg::PointCloud2 Input pointcloud.

Output

Name Type Description
~/output/pointcloud/segmentation sensor_msgs::msg::PointCloud2 XYZ cloud with class ID field.
~/output/pointcloud/visualization sensor_msgs::msg::PointCloud2 XYZ cloud with RGB field.
~/output/pointcloud/filtered sensor_msgs::msg::PointCloud2 Input format cloud after removing specified point’s class.
debug/cyclic_time_ms autoware_internal_debug_msgs::msg::Float64Stamped Cyclic time (ms).
debug/pipeline_latency_ms autoware_internal_debug_msgs::msg::Float64Stamped Pipeline latency time (ms).
debug/processing_time/preprocess_ms autoware_internal_debug_msgs::msg::Float64Stamped Preprocess (ms).
debug/processing_time/inference_ms autoware_internal_debug_msgs::msg::Float64Stamped Inference time (ms).
debug/processing_time/postprocess_ms autoware_internal_debug_msgs::msg::Float64Stamped Postprocess time (ms).
debug/processing_time/total_ms autoware_internal_debug_msgs::msg::Float64Stamped Total processing time (ms).
/diagnostics diagnostic_msgs::msg::DiagnosticArray Node diagnostics with respect to processing time constraints

Parameters

FRNet node

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/frnet.schema.json”) }}

FRNet model

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/ml_package_frnet.schema.json”) }}

FRNet diagnostics

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/diagnostics_frnet.schema.json”) }}

The build_only option

The autoware_lidar_frnet node has build_only option to build the TensorRT engine file from the ONNX file.

ros2 launch autoware_lidar_frnet lidar_frnet.launch.xml build_only:=true

Assumptions / Known limits

This library operates on raw cloud data (bytes). It is assumed that the input pointcloud message has XYZIRC format:

[
  sensor_msgs.msg.PointField(name='x', offset=0, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='y', offset=4, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='z', offset=8, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='intensity', offset=12, datatype=2, count=1),
  sensor_msgs.msg.PointField(name='ring', offset=13, datatype=2, count=1),
  sensor_msgs.msg.PointField(name='channel', offset=14, datatype=4, count=1)
]

This input may consist of other fields as well - shown format is required minimum. For debug purposes, you can validate your pointcloud topic using simple command:

ros2 topic echo <input_topic> --field fields

Trained Models

The model was trained on the NuScenes dataset and is available in the Autoware artifacts.

[1] X. Xu, L. Kong, H. Shuai and Q. Liu, “FRNet: Frustum-Range Networks for Scalable LiDAR Segmentation” in IEEE Transactions on Image Processing, vol. 34, pp. 2173-2186, 2025, doi: 10.1109/TIP.2025.3550011.

[2] https://github.com/tier4/AWML.git

[3] https://xiangxu-0103.github.io/FRNet

CHANGELOG
No CHANGELOG found.

Launch files

  • launch/lidar_frnet.launch.xml
      • input/pointcloud [default: /sensing/lidar/top/pointcloud]
      • output/pointcloud/segmentation [default: segmentation]
      • output/pointcloud/visualization [default: visualization]
      • output/pointcloud/filtered [default: filtered]
      • data_path [default: $(env HOME)/autoware_data]
      • model_name [default: frnet]
      • model_path [default: $(var data_path)/lidar_frnet]
      • model_param_path [default: $(find-pkg-share autoware_lidar_frnet)/config/$(var model_name).param.yaml]
      • ml_package_param_path [default: $(var model_path)/ml_package_$(var model_name).param.yaml]
      • diagnostics_param_path [default: $(find-pkg-share autoware_lidar_frnet)/config/diagnostics_frnet.param.yaml]
      • build_only [default: false]
      • use_pointcloud_container [default: false]
      • pointcloud_container_name [default: pointcloud_container]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_lidar_frnet at Robotics Stack Exchange

No version for distro galactic showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_lidar_frnet package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_camera_streampetr autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_frnet autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_ptv3 autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_bevformer autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_trajectory_adapter autoware_trajectory_concatenator autoware_trajectory_modifier autoware_trajectory_optimizer autoware_trajectory_ranker autoware_trajectory_safety_filter autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_roundabout_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_calibration_status_classifier autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.0.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-09-30
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

LiDAR segmentation based on FRNet

Additional Links

No additional links.

Maintainers

  • Amadeusz Szymko

Authors

  • Amadeusz Szymko

autoware_lidar_frnet

Purpose

The autoware_lidar_frnet package is used for 3D semantic segmentation based on LiDAR data (x, y, z, intensity).

Inner-workings / Algorithms

The implementation is based on the FRNet [1] project. It uses TensorRT library for data processing and network inference.

We trained the models using AWML [2].

Inputs / Outputs

Input

Name Type Description
~/input/pointcloud sensor_msgs::msg::PointCloud2 Input pointcloud.

Output

Name Type Description
~/output/pointcloud/segmentation sensor_msgs::msg::PointCloud2 XYZ cloud with class ID field.
~/output/pointcloud/visualization sensor_msgs::msg::PointCloud2 XYZ cloud with RGB field.
~/output/pointcloud/filtered sensor_msgs::msg::PointCloud2 Input format cloud after removing specified point’s class.
debug/cyclic_time_ms autoware_internal_debug_msgs::msg::Float64Stamped Cyclic time (ms).
debug/pipeline_latency_ms autoware_internal_debug_msgs::msg::Float64Stamped Pipeline latency time (ms).
debug/processing_time/preprocess_ms autoware_internal_debug_msgs::msg::Float64Stamped Preprocess (ms).
debug/processing_time/inference_ms autoware_internal_debug_msgs::msg::Float64Stamped Inference time (ms).
debug/processing_time/postprocess_ms autoware_internal_debug_msgs::msg::Float64Stamped Postprocess time (ms).
debug/processing_time/total_ms autoware_internal_debug_msgs::msg::Float64Stamped Total processing time (ms).
/diagnostics diagnostic_msgs::msg::DiagnosticArray Node diagnostics with respect to processing time constraints

Parameters

FRNet node

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/frnet.schema.json”) }}

FRNet model

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/ml_package_frnet.schema.json”) }}

FRNet diagnostics

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/diagnostics_frnet.schema.json”) }}

The build_only option

The autoware_lidar_frnet node has build_only option to build the TensorRT engine file from the ONNX file.

ros2 launch autoware_lidar_frnet lidar_frnet.launch.xml build_only:=true

Assumptions / Known limits

This library operates on raw cloud data (bytes). It is assumed that the input pointcloud message has XYZIRC format:

[
  sensor_msgs.msg.PointField(name='x', offset=0, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='y', offset=4, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='z', offset=8, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='intensity', offset=12, datatype=2, count=1),
  sensor_msgs.msg.PointField(name='ring', offset=13, datatype=2, count=1),
  sensor_msgs.msg.PointField(name='channel', offset=14, datatype=4, count=1)
]

This input may consist of other fields as well - shown format is required minimum. For debug purposes, you can validate your pointcloud topic using simple command:

ros2 topic echo <input_topic> --field fields

Trained Models

The model was trained on the NuScenes dataset and is available in the Autoware artifacts.

[1] X. Xu, L. Kong, H. Shuai and Q. Liu, “FRNet: Frustum-Range Networks for Scalable LiDAR Segmentation” in IEEE Transactions on Image Processing, vol. 34, pp. 2173-2186, 2025, doi: 10.1109/TIP.2025.3550011.

[2] https://github.com/tier4/AWML.git

[3] https://xiangxu-0103.github.io/FRNet

CHANGELOG
No CHANGELOG found.

Launch files

  • launch/lidar_frnet.launch.xml
      • input/pointcloud [default: /sensing/lidar/top/pointcloud]
      • output/pointcloud/segmentation [default: segmentation]
      • output/pointcloud/visualization [default: visualization]
      • output/pointcloud/filtered [default: filtered]
      • data_path [default: $(env HOME)/autoware_data]
      • model_name [default: frnet]
      • model_path [default: $(var data_path)/lidar_frnet]
      • model_param_path [default: $(find-pkg-share autoware_lidar_frnet)/config/$(var model_name).param.yaml]
      • ml_package_param_path [default: $(var model_path)/ml_package_$(var model_name).param.yaml]
      • diagnostics_param_path [default: $(find-pkg-share autoware_lidar_frnet)/config/diagnostics_frnet.param.yaml]
      • build_only [default: false]
      • use_pointcloud_container [default: false]
      • pointcloud_container_name [default: pointcloud_container]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_lidar_frnet at Robotics Stack Exchange

No version for distro iron showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_lidar_frnet package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_camera_streampetr autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_frnet autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_ptv3 autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_bevformer autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_trajectory_adapter autoware_trajectory_concatenator autoware_trajectory_modifier autoware_trajectory_optimizer autoware_trajectory_ranker autoware_trajectory_safety_filter autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_roundabout_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_calibration_status_classifier autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.0.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-09-30
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

LiDAR segmentation based on FRNet

Additional Links

No additional links.

Maintainers

  • Amadeusz Szymko

Authors

  • Amadeusz Szymko

autoware_lidar_frnet

Purpose

The autoware_lidar_frnet package is used for 3D semantic segmentation based on LiDAR data (x, y, z, intensity).

Inner-workings / Algorithms

The implementation is based on the FRNet [1] project. It uses TensorRT library for data processing and network inference.

We trained the models using AWML [2].

Inputs / Outputs

Input

Name Type Description
~/input/pointcloud sensor_msgs::msg::PointCloud2 Input pointcloud.

Output

Name Type Description
~/output/pointcloud/segmentation sensor_msgs::msg::PointCloud2 XYZ cloud with class ID field.
~/output/pointcloud/visualization sensor_msgs::msg::PointCloud2 XYZ cloud with RGB field.
~/output/pointcloud/filtered sensor_msgs::msg::PointCloud2 Input format cloud after removing specified point’s class.
debug/cyclic_time_ms autoware_internal_debug_msgs::msg::Float64Stamped Cyclic time (ms).
debug/pipeline_latency_ms autoware_internal_debug_msgs::msg::Float64Stamped Pipeline latency time (ms).
debug/processing_time/preprocess_ms autoware_internal_debug_msgs::msg::Float64Stamped Preprocess (ms).
debug/processing_time/inference_ms autoware_internal_debug_msgs::msg::Float64Stamped Inference time (ms).
debug/processing_time/postprocess_ms autoware_internal_debug_msgs::msg::Float64Stamped Postprocess time (ms).
debug/processing_time/total_ms autoware_internal_debug_msgs::msg::Float64Stamped Total processing time (ms).
/diagnostics diagnostic_msgs::msg::DiagnosticArray Node diagnostics with respect to processing time constraints

Parameters

FRNet node

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/frnet.schema.json”) }}

FRNet model

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/ml_package_frnet.schema.json”) }}

FRNet diagnostics

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/diagnostics_frnet.schema.json”) }}

The build_only option

The autoware_lidar_frnet node has build_only option to build the TensorRT engine file from the ONNX file.

ros2 launch autoware_lidar_frnet lidar_frnet.launch.xml build_only:=true

Assumptions / Known limits

This library operates on raw cloud data (bytes). It is assumed that the input pointcloud message has XYZIRC format:

[
  sensor_msgs.msg.PointField(name='x', offset=0, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='y', offset=4, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='z', offset=8, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='intensity', offset=12, datatype=2, count=1),
  sensor_msgs.msg.PointField(name='ring', offset=13, datatype=2, count=1),
  sensor_msgs.msg.PointField(name='channel', offset=14, datatype=4, count=1)
]

This input may consist of other fields as well - shown format is required minimum. For debug purposes, you can validate your pointcloud topic using simple command:

ros2 topic echo <input_topic> --field fields

Trained Models

The model was trained on the NuScenes dataset and is available in the Autoware artifacts.

[1] X. Xu, L. Kong, H. Shuai and Q. Liu, “FRNet: Frustum-Range Networks for Scalable LiDAR Segmentation” in IEEE Transactions on Image Processing, vol. 34, pp. 2173-2186, 2025, doi: 10.1109/TIP.2025.3550011.

[2] https://github.com/tier4/AWML.git

[3] https://xiangxu-0103.github.io/FRNet

CHANGELOG
No CHANGELOG found.

Launch files

  • launch/lidar_frnet.launch.xml
      • input/pointcloud [default: /sensing/lidar/top/pointcloud]
      • output/pointcloud/segmentation [default: segmentation]
      • output/pointcloud/visualization [default: visualization]
      • output/pointcloud/filtered [default: filtered]
      • data_path [default: $(env HOME)/autoware_data]
      • model_name [default: frnet]
      • model_path [default: $(var data_path)/lidar_frnet]
      • model_param_path [default: $(find-pkg-share autoware_lidar_frnet)/config/$(var model_name).param.yaml]
      • ml_package_param_path [default: $(var model_path)/ml_package_$(var model_name).param.yaml]
      • diagnostics_param_path [default: $(find-pkg-share autoware_lidar_frnet)/config/diagnostics_frnet.param.yaml]
      • build_only [default: false]
      • use_pointcloud_container [default: false]
      • pointcloud_container_name [default: pointcloud_container]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_lidar_frnet at Robotics Stack Exchange

No version for distro melodic showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_lidar_frnet package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_camera_streampetr autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_frnet autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_ptv3 autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_bevformer autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_trajectory_adapter autoware_trajectory_concatenator autoware_trajectory_modifier autoware_trajectory_optimizer autoware_trajectory_ranker autoware_trajectory_safety_filter autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_roundabout_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_calibration_status_classifier autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.0.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-09-30
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

LiDAR segmentation based on FRNet

Additional Links

No additional links.

Maintainers

  • Amadeusz Szymko

Authors

  • Amadeusz Szymko

autoware_lidar_frnet

Purpose

The autoware_lidar_frnet package is used for 3D semantic segmentation based on LiDAR data (x, y, z, intensity).

Inner-workings / Algorithms

The implementation is based on the FRNet [1] project. It uses TensorRT library for data processing and network inference.

We trained the models using AWML [2].

Inputs / Outputs

Input

Name Type Description
~/input/pointcloud sensor_msgs::msg::PointCloud2 Input pointcloud.

Output

Name Type Description
~/output/pointcloud/segmentation sensor_msgs::msg::PointCloud2 XYZ cloud with class ID field.
~/output/pointcloud/visualization sensor_msgs::msg::PointCloud2 XYZ cloud with RGB field.
~/output/pointcloud/filtered sensor_msgs::msg::PointCloud2 Input format cloud after removing specified point’s class.
debug/cyclic_time_ms autoware_internal_debug_msgs::msg::Float64Stamped Cyclic time (ms).
debug/pipeline_latency_ms autoware_internal_debug_msgs::msg::Float64Stamped Pipeline latency time (ms).
debug/processing_time/preprocess_ms autoware_internal_debug_msgs::msg::Float64Stamped Preprocess (ms).
debug/processing_time/inference_ms autoware_internal_debug_msgs::msg::Float64Stamped Inference time (ms).
debug/processing_time/postprocess_ms autoware_internal_debug_msgs::msg::Float64Stamped Postprocess time (ms).
debug/processing_time/total_ms autoware_internal_debug_msgs::msg::Float64Stamped Total processing time (ms).
/diagnostics diagnostic_msgs::msg::DiagnosticArray Node diagnostics with respect to processing time constraints

Parameters

FRNet node

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/frnet.schema.json”) }}

FRNet model

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/ml_package_frnet.schema.json”) }}

FRNet diagnostics

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/diagnostics_frnet.schema.json”) }}

The build_only option

The autoware_lidar_frnet node has build_only option to build the TensorRT engine file from the ONNX file.

ros2 launch autoware_lidar_frnet lidar_frnet.launch.xml build_only:=true

Assumptions / Known limits

This library operates on raw cloud data (bytes). It is assumed that the input pointcloud message has XYZIRC format:

[
  sensor_msgs.msg.PointField(name='x', offset=0, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='y', offset=4, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='z', offset=8, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='intensity', offset=12, datatype=2, count=1),
  sensor_msgs.msg.PointField(name='ring', offset=13, datatype=2, count=1),
  sensor_msgs.msg.PointField(name='channel', offset=14, datatype=4, count=1)
]

This input may consist of other fields as well - shown format is required minimum. For debug purposes, you can validate your pointcloud topic using simple command:

ros2 topic echo <input_topic> --field fields

Trained Models

The model was trained on the NuScenes dataset and is available in the Autoware artifacts.

[1] X. Xu, L. Kong, H. Shuai and Q. Liu, “FRNet: Frustum-Range Networks for Scalable LiDAR Segmentation” in IEEE Transactions on Image Processing, vol. 34, pp. 2173-2186, 2025, doi: 10.1109/TIP.2025.3550011.

[2] https://github.com/tier4/AWML.git

[3] https://xiangxu-0103.github.io/FRNet

CHANGELOG
No CHANGELOG found.

Launch files

  • launch/lidar_frnet.launch.xml
      • input/pointcloud [default: /sensing/lidar/top/pointcloud]
      • output/pointcloud/segmentation [default: segmentation]
      • output/pointcloud/visualization [default: visualization]
      • output/pointcloud/filtered [default: filtered]
      • data_path [default: $(env HOME)/autoware_data]
      • model_name [default: frnet]
      • model_path [default: $(var data_path)/lidar_frnet]
      • model_param_path [default: $(find-pkg-share autoware_lidar_frnet)/config/$(var model_name).param.yaml]
      • ml_package_param_path [default: $(var model_path)/ml_package_$(var model_name).param.yaml]
      • diagnostics_param_path [default: $(find-pkg-share autoware_lidar_frnet)/config/diagnostics_frnet.param.yaml]
      • build_only [default: false]
      • use_pointcloud_container [default: false]
      • pointcloud_container_name [default: pointcloud_container]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_lidar_frnet at Robotics Stack Exchange

No version for distro noetic showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_lidar_frnet package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_camera_streampetr autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_frnet autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_ptv3 autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_bevformer autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_trajectory_adapter autoware_trajectory_concatenator autoware_trajectory_modifier autoware_trajectory_optimizer autoware_trajectory_ranker autoware_trajectory_safety_filter autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_roundabout_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_calibration_status_classifier autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.0.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-09-30
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

LiDAR segmentation based on FRNet

Additional Links

No additional links.

Maintainers

  • Amadeusz Szymko

Authors

  • Amadeusz Szymko

autoware_lidar_frnet

Purpose

The autoware_lidar_frnet package is used for 3D semantic segmentation based on LiDAR data (x, y, z, intensity).

Inner-workings / Algorithms

The implementation is based on the FRNet [1] project. It uses TensorRT library for data processing and network inference.

We trained the models using AWML [2].

Inputs / Outputs

Input

Name Type Description
~/input/pointcloud sensor_msgs::msg::PointCloud2 Input pointcloud.

Output

Name Type Description
~/output/pointcloud/segmentation sensor_msgs::msg::PointCloud2 XYZ cloud with class ID field.
~/output/pointcloud/visualization sensor_msgs::msg::PointCloud2 XYZ cloud with RGB field.
~/output/pointcloud/filtered sensor_msgs::msg::PointCloud2 Input format cloud after removing specified point’s class.
debug/cyclic_time_ms autoware_internal_debug_msgs::msg::Float64Stamped Cyclic time (ms).
debug/pipeline_latency_ms autoware_internal_debug_msgs::msg::Float64Stamped Pipeline latency time (ms).
debug/processing_time/preprocess_ms autoware_internal_debug_msgs::msg::Float64Stamped Preprocess (ms).
debug/processing_time/inference_ms autoware_internal_debug_msgs::msg::Float64Stamped Inference time (ms).
debug/processing_time/postprocess_ms autoware_internal_debug_msgs::msg::Float64Stamped Postprocess time (ms).
debug/processing_time/total_ms autoware_internal_debug_msgs::msg::Float64Stamped Total processing time (ms).
/diagnostics diagnostic_msgs::msg::DiagnosticArray Node diagnostics with respect to processing time constraints

Parameters

FRNet node

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/frnet.schema.json”) }}

FRNet model

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/ml_package_frnet.schema.json”) }}

FRNet diagnostics

{{ json_to_markdown(“perception/autoware_lidar_frnet/schema/diagnostics_frnet.schema.json”) }}

The build_only option

The autoware_lidar_frnet node has build_only option to build the TensorRT engine file from the ONNX file.

ros2 launch autoware_lidar_frnet lidar_frnet.launch.xml build_only:=true

Assumptions / Known limits

This library operates on raw cloud data (bytes). It is assumed that the input pointcloud message has XYZIRC format:

[
  sensor_msgs.msg.PointField(name='x', offset=0, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='y', offset=4, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='z', offset=8, datatype=7, count=1),
  sensor_msgs.msg.PointField(name='intensity', offset=12, datatype=2, count=1),
  sensor_msgs.msg.PointField(name='ring', offset=13, datatype=2, count=1),
  sensor_msgs.msg.PointField(name='channel', offset=14, datatype=4, count=1)
]

This input may consist of other fields as well - shown format is required minimum. For debug purposes, you can validate your pointcloud topic using simple command:

ros2 topic echo <input_topic> --field fields

Trained Models

The model was trained on the NuScenes dataset and is available in the Autoware artifacts.

[1] X. Xu, L. Kong, H. Shuai and Q. Liu, “FRNet: Frustum-Range Networks for Scalable LiDAR Segmentation” in IEEE Transactions on Image Processing, vol. 34, pp. 2173-2186, 2025, doi: 10.1109/TIP.2025.3550011.

[2] https://github.com/tier4/AWML.git

[3] https://xiangxu-0103.github.io/FRNet

CHANGELOG
No CHANGELOG found.

Launch files

  • launch/lidar_frnet.launch.xml
      • input/pointcloud [default: /sensing/lidar/top/pointcloud]
      • output/pointcloud/segmentation [default: segmentation]
      • output/pointcloud/visualization [default: visualization]
      • output/pointcloud/filtered [default: filtered]
      • data_path [default: $(env HOME)/autoware_data]
      • model_name [default: frnet]
      • model_path [default: $(var data_path)/lidar_frnet]
      • model_param_path [default: $(find-pkg-share autoware_lidar_frnet)/config/$(var model_name).param.yaml]
      • ml_package_param_path [default: $(var model_path)/ml_package_$(var model_name).param.yaml]
      • diagnostics_param_path [default: $(find-pkg-share autoware_lidar_frnet)/config/diagnostics_frnet.param.yaml]
      • build_only [default: false]
      • use_pointcloud_container [default: false]
      • pointcloud_container_name [default: pointcloud_container]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_lidar_frnet at Robotics Stack Exchange