Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Dan Umeda
- Manato Hirabayashi
- Kotaro Uetake
- Masato Saeki
Authors
- Daisuke Nishimatsu
autoware_tensorrt_yolox
Purpose
This package detects target objects e.g., cars, trucks, bicycles, and pedestrians and segment target objects such as cars, trucks, buses and pedestrian, building, vegetation, road, sidewalk on a image based on YOLOX model with multi-header structure.
Additionally, the package also supports traffic light detection by switching onnx file which target classes listed on respective label_file
. Currently 0: unknown
, 1: car_traffic_light
and 2: pedestrian_traffic_light
.
Inner-workings / Algorithms
Cite
Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, Jian Sun, “YOLOX: Exceeding YOLO Series in 2021”, arXiv preprint arXiv:2107.08430, 2021 [ref]
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
in/image |
sensor_msgs/Image |
The input image |
Output
Name | Type | Description |
---|---|---|
out/objects |
tier4_perception_msgs/DetectedObjectsWithFeature |
The detected objects or traffic light with 2D bounding boxes |
out/image |
sensor_msgs/Image |
The image with 2D bounding boxes for visualization |
out/mask |
sensor_msgs/Image |
The semantic segmentation mask (only effective for semseg model) |
out/color_mask |
sensor_msgs/Image |
The colorized image of semantic segmentation mask for visualization (only effective for semseg model) |
Parameters
yolox_s_plus_opt
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_s_plus_opt.schema.json”) }}
yolox_tiny
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_tiny.schema.json”) }}
yolox_traffic_light_detector
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_traffic_light_detector.schema.json”) }}
Assumptions / Known limits
The label contained in detected 2D bounding boxes (i.e., out/objects
) will be either one of the followings:
- CAR
- PEDESTRIAN (“PERSON” will also be categorized as “PEDESTRIAN”)
- BUS
- TRUCK
- BICYCLE
- MOTORCYCLE
or
- UNKNOWN
- CAR_TRAFFIC_LIGHT
- PEDESTRIAN_TRAFFIC_LIGHT
for traffic light detector onnx model.
If other labels (case insensitive) are contained in the file specified via the label_file
parameter,
those are labeled as UNKNOWN
, while detected rectangles are drawn in the visualization result (out/image
).
The semantic segmentation mask is a gray image whose each pixel is index of one following class:
index | semantic name |
---|---|
0 | road |
1 | building |
2 | wall |
3 | obstacle |
4 | traffic_light |
5 | traffic_sign |
6 | person |
7 | vehicle |
8 | bike |
9 | road |
10 | sidewalk |
11 | roadPaint |
12 | curbstone |
13 | crosswalk_others |
14 | vegetation |
15 | sky |
Onnx model
A sample model (named yolox-tiny.onnx
) is downloaded by ansible script on env preparation stage, if not, please, follow Manual downloading of artifacts.
To accelerate Non-maximum-suppression (NMS), which is one of the common post-process after object detection inference,
EfficientNMS_TRT
module is attached after the ordinal YOLOX (tiny) network.
The EfficientNMS_TRT
module contains fixed values for score_threshold
and nms_threshold
in it,
hence these parameters are ignored when users specify ONNX models including this module.
This package accepts both EfficientNMS_TRT
attached ONNXs and models published from the official YOLOX repository (we referred to them as “plain” models).
File truncated at 100 lines see the full file
Changelog for package autoware_tensorrt_yolox
0.47.0 (2025-08-11)
0.46.0 (2025-06-20)
0.45.0 (2025-05-22)
-
Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
-
chore: perception code owner update (#10645)
- chore: update maintainers in multiple perception packages
* Revert "chore: update maintainers in multiple perception packages" This reverts commit f2838c33d6cd82bd032039e2a12b9cb8ba6eb584.
- chore: update maintainers in multiple perception packages
* chore: add Kok Seang Tan as maintainer in multiple perception packages ---------
-
feat(autoware_tensorrt_yolox): added target architectures for yolox (#10611)
- chore: added target architectures for yolox
- chore: mistook the compute capabilities of edge devices
* chore: cspell ---------
-
Contributors: Kenzo Lobos Tsunekawa, Taekjin LEE, TaikiYamada4
0.44.2 (2025-06-10)
0.44.1 (2025-05-01)
0.44.0 (2025-04-18)
- Merge remote-tracking branch 'origin/main' into humble
- feat(tensorrt_yolox): add autoware_utils packages (#10460) Co-authored-by: t4-adc <<grp-rd-1-adc-admin@tier4.jp>>
- fix(autoware_tensorrt_yolox): explicitly install shared library (#10454)
- Contributors: Kazunori-Nakajima, Manato Hirabayashi, Ryohsuke Mitsudome
0.43.0 (2025-03-21)
-
Merge remote-tracking branch 'origin/main' into chore/bump-version-0.43
-
chore: rename from [autoware.universe]{.title-ref} to [autoware_universe]{.title-ref} (#10306)
-
chore(perception): refactor perception launch (#10186)
- fundamental change
- style(pre-commit): autofix
- fix typo
- fix params and modify some packages
- pre-commit
- fix
- fix spell check
- fix typo
- integrate model and label path
- style(pre-commit): autofix
- for pre-commit
- run pre-commit
- for awsim
- for simulatior
- style(pre-commit): autofix
- fix grammer in launcher
- add schema for yolox_tlr
- style(pre-commit): autofix
- fix file name
- fix
- rename
- modify arg name to
- fix typo
- change param name
- style(pre-commit): autofix
* chore
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Shintaro Tomie <<58775300+Shin-kyoto@users.noreply.github.com>> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>
-
refactor: add autoware_cuda_dependency_meta (#10073)
-
Contributors: Esteve Fernandez, Hayato Mizushima, Masato Saeki,
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Name |
---|
libopencv-dev |
Dependant Packages
Launch files
- launch/multiple_yolox.launch.xml
-
- image_raw0 [default: /image_raw0]
- image_raw1 [default: ]
- image_raw2 [default: ]
- image_raw3 [default: ]
- image_raw4 [default: ]
- image_raw5 [default: ]
- image_raw6 [default: ]
- image_raw7 [default: ]
- image_number [default: 1]
- output_topic [default: rois]
- launch/yolox.launch.xml
-
- yolox_node_name [default: tensorrt_yolox]
- image_transport_decompressor_node_name [default: image_transport_decompressor_node]
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- output/mask [default: /perception/object_recognition/detection/mask0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_s_plus_opt.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-sPlus-opt-pseudoV2-T4-960x960-T4-seg16cls.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompress_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_s_plus_opt.launch.xml
-
- yolox_node_name [default: tensorrt_yolox]
- image_transport_decompressor_node_name [default: image_transport_decompressor_node]
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- output/mask [default: /perception/object_recognition/detection/mask0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_s_plus_opt.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-sPlus-opt-pseudoV2-T4-960x960-T4-seg16cls.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompress_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_tiny.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_tiny.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-tiny.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompressor_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_traffic_light_detector.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera6/image_raw]
- output/objects [default: /perception/traffic_light_recognition/camera6/detection/rois]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_traffic_light_detector.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox_s_car_ped_tl_detector_960_960_batch_1.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/car_ped_tl_detector_labels.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompressor_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
Messages
Services
Plugins
Recent questions tagged autoware_tensorrt_yolox at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Dan Umeda
- Manato Hirabayashi
- Kotaro Uetake
- Masato Saeki
Authors
- Daisuke Nishimatsu
autoware_tensorrt_yolox
Purpose
This package detects target objects e.g., cars, trucks, bicycles, and pedestrians and segment target objects such as cars, trucks, buses and pedestrian, building, vegetation, road, sidewalk on a image based on YOLOX model with multi-header structure.
Additionally, the package also supports traffic light detection by switching onnx file which target classes listed on respective label_file
. Currently 0: unknown
, 1: car_traffic_light
and 2: pedestrian_traffic_light
.
Inner-workings / Algorithms
Cite
Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, Jian Sun, “YOLOX: Exceeding YOLO Series in 2021”, arXiv preprint arXiv:2107.08430, 2021 [ref]
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
in/image |
sensor_msgs/Image |
The input image |
Output
Name | Type | Description |
---|---|---|
out/objects |
tier4_perception_msgs/DetectedObjectsWithFeature |
The detected objects or traffic light with 2D bounding boxes |
out/image |
sensor_msgs/Image |
The image with 2D bounding boxes for visualization |
out/mask |
sensor_msgs/Image |
The semantic segmentation mask (only effective for semseg model) |
out/color_mask |
sensor_msgs/Image |
The colorized image of semantic segmentation mask for visualization (only effective for semseg model) |
Parameters
yolox_s_plus_opt
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_s_plus_opt.schema.json”) }}
yolox_tiny
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_tiny.schema.json”) }}
yolox_traffic_light_detector
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_traffic_light_detector.schema.json”) }}
Assumptions / Known limits
The label contained in detected 2D bounding boxes (i.e., out/objects
) will be either one of the followings:
- CAR
- PEDESTRIAN (“PERSON” will also be categorized as “PEDESTRIAN”)
- BUS
- TRUCK
- BICYCLE
- MOTORCYCLE
or
- UNKNOWN
- CAR_TRAFFIC_LIGHT
- PEDESTRIAN_TRAFFIC_LIGHT
for traffic light detector onnx model.
If other labels (case insensitive) are contained in the file specified via the label_file
parameter,
those are labeled as UNKNOWN
, while detected rectangles are drawn in the visualization result (out/image
).
The semantic segmentation mask is a gray image whose each pixel is index of one following class:
index | semantic name |
---|---|
0 | road |
1 | building |
2 | wall |
3 | obstacle |
4 | traffic_light |
5 | traffic_sign |
6 | person |
7 | vehicle |
8 | bike |
9 | road |
10 | sidewalk |
11 | roadPaint |
12 | curbstone |
13 | crosswalk_others |
14 | vegetation |
15 | sky |
Onnx model
A sample model (named yolox-tiny.onnx
) is downloaded by ansible script on env preparation stage, if not, please, follow Manual downloading of artifacts.
To accelerate Non-maximum-suppression (NMS), which is one of the common post-process after object detection inference,
EfficientNMS_TRT
module is attached after the ordinal YOLOX (tiny) network.
The EfficientNMS_TRT
module contains fixed values for score_threshold
and nms_threshold
in it,
hence these parameters are ignored when users specify ONNX models including this module.
This package accepts both EfficientNMS_TRT
attached ONNXs and models published from the official YOLOX repository (we referred to them as “plain” models).
File truncated at 100 lines see the full file
Changelog for package autoware_tensorrt_yolox
0.47.0 (2025-08-11)
0.46.0 (2025-06-20)
0.45.0 (2025-05-22)
-
Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
-
chore: perception code owner update (#10645)
- chore: update maintainers in multiple perception packages
* Revert "chore: update maintainers in multiple perception packages" This reverts commit f2838c33d6cd82bd032039e2a12b9cb8ba6eb584.
- chore: update maintainers in multiple perception packages
* chore: add Kok Seang Tan as maintainer in multiple perception packages ---------
-
feat(autoware_tensorrt_yolox): added target architectures for yolox (#10611)
- chore: added target architectures for yolox
- chore: mistook the compute capabilities of edge devices
* chore: cspell ---------
-
Contributors: Kenzo Lobos Tsunekawa, Taekjin LEE, TaikiYamada4
0.44.2 (2025-06-10)
0.44.1 (2025-05-01)
0.44.0 (2025-04-18)
- Merge remote-tracking branch 'origin/main' into humble
- feat(tensorrt_yolox): add autoware_utils packages (#10460) Co-authored-by: t4-adc <<grp-rd-1-adc-admin@tier4.jp>>
- fix(autoware_tensorrt_yolox): explicitly install shared library (#10454)
- Contributors: Kazunori-Nakajima, Manato Hirabayashi, Ryohsuke Mitsudome
0.43.0 (2025-03-21)
-
Merge remote-tracking branch 'origin/main' into chore/bump-version-0.43
-
chore: rename from [autoware.universe]{.title-ref} to [autoware_universe]{.title-ref} (#10306)
-
chore(perception): refactor perception launch (#10186)
- fundamental change
- style(pre-commit): autofix
- fix typo
- fix params and modify some packages
- pre-commit
- fix
- fix spell check
- fix typo
- integrate model and label path
- style(pre-commit): autofix
- for pre-commit
- run pre-commit
- for awsim
- for simulatior
- style(pre-commit): autofix
- fix grammer in launcher
- add schema for yolox_tlr
- style(pre-commit): autofix
- fix file name
- fix
- rename
- modify arg name to
- fix typo
- change param name
- style(pre-commit): autofix
* chore
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Shintaro Tomie <<58775300+Shin-kyoto@users.noreply.github.com>> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>
-
refactor: add autoware_cuda_dependency_meta (#10073)
-
Contributors: Esteve Fernandez, Hayato Mizushima, Masato Saeki,
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Name |
---|
libopencv-dev |
Dependant Packages
Launch files
- launch/multiple_yolox.launch.xml
-
- image_raw0 [default: /image_raw0]
- image_raw1 [default: ]
- image_raw2 [default: ]
- image_raw3 [default: ]
- image_raw4 [default: ]
- image_raw5 [default: ]
- image_raw6 [default: ]
- image_raw7 [default: ]
- image_number [default: 1]
- output_topic [default: rois]
- launch/yolox.launch.xml
-
- yolox_node_name [default: tensorrt_yolox]
- image_transport_decompressor_node_name [default: image_transport_decompressor_node]
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- output/mask [default: /perception/object_recognition/detection/mask0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_s_plus_opt.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-sPlus-opt-pseudoV2-T4-960x960-T4-seg16cls.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompress_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_s_plus_opt.launch.xml
-
- yolox_node_name [default: tensorrt_yolox]
- image_transport_decompressor_node_name [default: image_transport_decompressor_node]
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- output/mask [default: /perception/object_recognition/detection/mask0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_s_plus_opt.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-sPlus-opt-pseudoV2-T4-960x960-T4-seg16cls.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompress_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_tiny.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_tiny.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-tiny.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompressor_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_traffic_light_detector.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera6/image_raw]
- output/objects [default: /perception/traffic_light_recognition/camera6/detection/rois]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_traffic_light_detector.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox_s_car_ped_tl_detector_960_960_batch_1.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/car_ped_tl_detector_labels.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompressor_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
Messages
Services
Plugins
Recent questions tagged autoware_tensorrt_yolox at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Dan Umeda
- Manato Hirabayashi
- Kotaro Uetake
- Masato Saeki
Authors
- Daisuke Nishimatsu
autoware_tensorrt_yolox
Purpose
This package detects target objects e.g., cars, trucks, bicycles, and pedestrians and segment target objects such as cars, trucks, buses and pedestrian, building, vegetation, road, sidewalk on a image based on YOLOX model with multi-header structure.
Additionally, the package also supports traffic light detection by switching onnx file which target classes listed on respective label_file
. Currently 0: unknown
, 1: car_traffic_light
and 2: pedestrian_traffic_light
.
Inner-workings / Algorithms
Cite
Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, Jian Sun, “YOLOX: Exceeding YOLO Series in 2021”, arXiv preprint arXiv:2107.08430, 2021 [ref]
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
in/image |
sensor_msgs/Image |
The input image |
Output
Name | Type | Description |
---|---|---|
out/objects |
tier4_perception_msgs/DetectedObjectsWithFeature |
The detected objects or traffic light with 2D bounding boxes |
out/image |
sensor_msgs/Image |
The image with 2D bounding boxes for visualization |
out/mask |
sensor_msgs/Image |
The semantic segmentation mask (only effective for semseg model) |
out/color_mask |
sensor_msgs/Image |
The colorized image of semantic segmentation mask for visualization (only effective for semseg model) |
Parameters
yolox_s_plus_opt
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_s_plus_opt.schema.json”) }}
yolox_tiny
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_tiny.schema.json”) }}
yolox_traffic_light_detector
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_traffic_light_detector.schema.json”) }}
Assumptions / Known limits
The label contained in detected 2D bounding boxes (i.e., out/objects
) will be either one of the followings:
- CAR
- PEDESTRIAN (“PERSON” will also be categorized as “PEDESTRIAN”)
- BUS
- TRUCK
- BICYCLE
- MOTORCYCLE
or
- UNKNOWN
- CAR_TRAFFIC_LIGHT
- PEDESTRIAN_TRAFFIC_LIGHT
for traffic light detector onnx model.
If other labels (case insensitive) are contained in the file specified via the label_file
parameter,
those are labeled as UNKNOWN
, while detected rectangles are drawn in the visualization result (out/image
).
The semantic segmentation mask is a gray image whose each pixel is index of one following class:
index | semantic name |
---|---|
0 | road |
1 | building |
2 | wall |
3 | obstacle |
4 | traffic_light |
5 | traffic_sign |
6 | person |
7 | vehicle |
8 | bike |
9 | road |
10 | sidewalk |
11 | roadPaint |
12 | curbstone |
13 | crosswalk_others |
14 | vegetation |
15 | sky |
Onnx model
A sample model (named yolox-tiny.onnx
) is downloaded by ansible script on env preparation stage, if not, please, follow Manual downloading of artifacts.
To accelerate Non-maximum-suppression (NMS), which is one of the common post-process after object detection inference,
EfficientNMS_TRT
module is attached after the ordinal YOLOX (tiny) network.
The EfficientNMS_TRT
module contains fixed values for score_threshold
and nms_threshold
in it,
hence these parameters are ignored when users specify ONNX models including this module.
This package accepts both EfficientNMS_TRT
attached ONNXs and models published from the official YOLOX repository (we referred to them as “plain” models).
File truncated at 100 lines see the full file
Changelog for package autoware_tensorrt_yolox
0.47.0 (2025-08-11)
0.46.0 (2025-06-20)
0.45.0 (2025-05-22)
-
Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
-
chore: perception code owner update (#10645)
- chore: update maintainers in multiple perception packages
* Revert "chore: update maintainers in multiple perception packages" This reverts commit f2838c33d6cd82bd032039e2a12b9cb8ba6eb584.
- chore: update maintainers in multiple perception packages
* chore: add Kok Seang Tan as maintainer in multiple perception packages ---------
-
feat(autoware_tensorrt_yolox): added target architectures for yolox (#10611)
- chore: added target architectures for yolox
- chore: mistook the compute capabilities of edge devices
* chore: cspell ---------
-
Contributors: Kenzo Lobos Tsunekawa, Taekjin LEE, TaikiYamada4
0.44.2 (2025-06-10)
0.44.1 (2025-05-01)
0.44.0 (2025-04-18)
- Merge remote-tracking branch 'origin/main' into humble
- feat(tensorrt_yolox): add autoware_utils packages (#10460) Co-authored-by: t4-adc <<grp-rd-1-adc-admin@tier4.jp>>
- fix(autoware_tensorrt_yolox): explicitly install shared library (#10454)
- Contributors: Kazunori-Nakajima, Manato Hirabayashi, Ryohsuke Mitsudome
0.43.0 (2025-03-21)
-
Merge remote-tracking branch 'origin/main' into chore/bump-version-0.43
-
chore: rename from [autoware.universe]{.title-ref} to [autoware_universe]{.title-ref} (#10306)
-
chore(perception): refactor perception launch (#10186)
- fundamental change
- style(pre-commit): autofix
- fix typo
- fix params and modify some packages
- pre-commit
- fix
- fix spell check
- fix typo
- integrate model and label path
- style(pre-commit): autofix
- for pre-commit
- run pre-commit
- for awsim
- for simulatior
- style(pre-commit): autofix
- fix grammer in launcher
- add schema for yolox_tlr
- style(pre-commit): autofix
- fix file name
- fix
- rename
- modify arg name to
- fix typo
- change param name
- style(pre-commit): autofix
* chore
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Shintaro Tomie <<58775300+Shin-kyoto@users.noreply.github.com>> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>
-
refactor: add autoware_cuda_dependency_meta (#10073)
-
Contributors: Esteve Fernandez, Hayato Mizushima, Masato Saeki,
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Name |
---|
libopencv-dev |
Dependant Packages
Launch files
- launch/multiple_yolox.launch.xml
-
- image_raw0 [default: /image_raw0]
- image_raw1 [default: ]
- image_raw2 [default: ]
- image_raw3 [default: ]
- image_raw4 [default: ]
- image_raw5 [default: ]
- image_raw6 [default: ]
- image_raw7 [default: ]
- image_number [default: 1]
- output_topic [default: rois]
- launch/yolox.launch.xml
-
- yolox_node_name [default: tensorrt_yolox]
- image_transport_decompressor_node_name [default: image_transport_decompressor_node]
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- output/mask [default: /perception/object_recognition/detection/mask0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_s_plus_opt.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-sPlus-opt-pseudoV2-T4-960x960-T4-seg16cls.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompress_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_s_plus_opt.launch.xml
-
- yolox_node_name [default: tensorrt_yolox]
- image_transport_decompressor_node_name [default: image_transport_decompressor_node]
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- output/mask [default: /perception/object_recognition/detection/mask0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_s_plus_opt.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-sPlus-opt-pseudoV2-T4-960x960-T4-seg16cls.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompress_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_tiny.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_tiny.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-tiny.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompressor_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_traffic_light_detector.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera6/image_raw]
- output/objects [default: /perception/traffic_light_recognition/camera6/detection/rois]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_traffic_light_detector.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox_s_car_ped_tl_detector_960_960_batch_1.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/car_ped_tl_detector_labels.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompressor_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
Messages
Services
Plugins
Recent questions tagged autoware_tensorrt_yolox at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Dan Umeda
- Manato Hirabayashi
- Kotaro Uetake
- Masato Saeki
Authors
- Daisuke Nishimatsu
autoware_tensorrt_yolox
Purpose
This package detects target objects e.g., cars, trucks, bicycles, and pedestrians and segment target objects such as cars, trucks, buses and pedestrian, building, vegetation, road, sidewalk on a image based on YOLOX model with multi-header structure.
Additionally, the package also supports traffic light detection by switching onnx file which target classes listed on respective label_file
. Currently 0: unknown
, 1: car_traffic_light
and 2: pedestrian_traffic_light
.
Inner-workings / Algorithms
Cite
Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, Jian Sun, “YOLOX: Exceeding YOLO Series in 2021”, arXiv preprint arXiv:2107.08430, 2021 [ref]
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
in/image |
sensor_msgs/Image |
The input image |
Output
Name | Type | Description |
---|---|---|
out/objects |
tier4_perception_msgs/DetectedObjectsWithFeature |
The detected objects or traffic light with 2D bounding boxes |
out/image |
sensor_msgs/Image |
The image with 2D bounding boxes for visualization |
out/mask |
sensor_msgs/Image |
The semantic segmentation mask (only effective for semseg model) |
out/color_mask |
sensor_msgs/Image |
The colorized image of semantic segmentation mask for visualization (only effective for semseg model) |
Parameters
yolox_s_plus_opt
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_s_plus_opt.schema.json”) }}
yolox_tiny
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_tiny.schema.json”) }}
yolox_traffic_light_detector
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_traffic_light_detector.schema.json”) }}
Assumptions / Known limits
The label contained in detected 2D bounding boxes (i.e., out/objects
) will be either one of the followings:
- CAR
- PEDESTRIAN (“PERSON” will also be categorized as “PEDESTRIAN”)
- BUS
- TRUCK
- BICYCLE
- MOTORCYCLE
or
- UNKNOWN
- CAR_TRAFFIC_LIGHT
- PEDESTRIAN_TRAFFIC_LIGHT
for traffic light detector onnx model.
If other labels (case insensitive) are contained in the file specified via the label_file
parameter,
those are labeled as UNKNOWN
, while detected rectangles are drawn in the visualization result (out/image
).
The semantic segmentation mask is a gray image whose each pixel is index of one following class:
index | semantic name |
---|---|
0 | road |
1 | building |
2 | wall |
3 | obstacle |
4 | traffic_light |
5 | traffic_sign |
6 | person |
7 | vehicle |
8 | bike |
9 | road |
10 | sidewalk |
11 | roadPaint |
12 | curbstone |
13 | crosswalk_others |
14 | vegetation |
15 | sky |
Onnx model
A sample model (named yolox-tiny.onnx
) is downloaded by ansible script on env preparation stage, if not, please, follow Manual downloading of artifacts.
To accelerate Non-maximum-suppression (NMS), which is one of the common post-process after object detection inference,
EfficientNMS_TRT
module is attached after the ordinal YOLOX (tiny) network.
The EfficientNMS_TRT
module contains fixed values for score_threshold
and nms_threshold
in it,
hence these parameters are ignored when users specify ONNX models including this module.
This package accepts both EfficientNMS_TRT
attached ONNXs and models published from the official YOLOX repository (we referred to them as “plain” models).
File truncated at 100 lines see the full file
Changelog for package autoware_tensorrt_yolox
0.47.0 (2025-08-11)
0.46.0 (2025-06-20)
0.45.0 (2025-05-22)
-
Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
-
chore: perception code owner update (#10645)
- chore: update maintainers in multiple perception packages
* Revert "chore: update maintainers in multiple perception packages" This reverts commit f2838c33d6cd82bd032039e2a12b9cb8ba6eb584.
- chore: update maintainers in multiple perception packages
* chore: add Kok Seang Tan as maintainer in multiple perception packages ---------
-
feat(autoware_tensorrt_yolox): added target architectures for yolox (#10611)
- chore: added target architectures for yolox
- chore: mistook the compute capabilities of edge devices
* chore: cspell ---------
-
Contributors: Kenzo Lobos Tsunekawa, Taekjin LEE, TaikiYamada4
0.44.2 (2025-06-10)
0.44.1 (2025-05-01)
0.44.0 (2025-04-18)
- Merge remote-tracking branch 'origin/main' into humble
- feat(tensorrt_yolox): add autoware_utils packages (#10460) Co-authored-by: t4-adc <<grp-rd-1-adc-admin@tier4.jp>>
- fix(autoware_tensorrt_yolox): explicitly install shared library (#10454)
- Contributors: Kazunori-Nakajima, Manato Hirabayashi, Ryohsuke Mitsudome
0.43.0 (2025-03-21)
-
Merge remote-tracking branch 'origin/main' into chore/bump-version-0.43
-
chore: rename from [autoware.universe]{.title-ref} to [autoware_universe]{.title-ref} (#10306)
-
chore(perception): refactor perception launch (#10186)
- fundamental change
- style(pre-commit): autofix
- fix typo
- fix params and modify some packages
- pre-commit
- fix
- fix spell check
- fix typo
- integrate model and label path
- style(pre-commit): autofix
- for pre-commit
- run pre-commit
- for awsim
- for simulatior
- style(pre-commit): autofix
- fix grammer in launcher
- add schema for yolox_tlr
- style(pre-commit): autofix
- fix file name
- fix
- rename
- modify arg name to
- fix typo
- change param name
- style(pre-commit): autofix
* chore
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Shintaro Tomie <<58775300+Shin-kyoto@users.noreply.github.com>> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>
-
refactor: add autoware_cuda_dependency_meta (#10073)
-
Contributors: Esteve Fernandez, Hayato Mizushima, Masato Saeki,
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Name |
---|
libopencv-dev |
Dependant Packages
Launch files
- launch/multiple_yolox.launch.xml
-
- image_raw0 [default: /image_raw0]
- image_raw1 [default: ]
- image_raw2 [default: ]
- image_raw3 [default: ]
- image_raw4 [default: ]
- image_raw5 [default: ]
- image_raw6 [default: ]
- image_raw7 [default: ]
- image_number [default: 1]
- output_topic [default: rois]
- launch/yolox.launch.xml
-
- yolox_node_name [default: tensorrt_yolox]
- image_transport_decompressor_node_name [default: image_transport_decompressor_node]
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- output/mask [default: /perception/object_recognition/detection/mask0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_s_plus_opt.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-sPlus-opt-pseudoV2-T4-960x960-T4-seg16cls.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompress_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_s_plus_opt.launch.xml
-
- yolox_node_name [default: tensorrt_yolox]
- image_transport_decompressor_node_name [default: image_transport_decompressor_node]
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- output/mask [default: /perception/object_recognition/detection/mask0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_s_plus_opt.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-sPlus-opt-pseudoV2-T4-960x960-T4-seg16cls.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompress_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_tiny.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_tiny.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-tiny.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompressor_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_traffic_light_detector.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera6/image_raw]
- output/objects [default: /perception/traffic_light_recognition/camera6/detection/rois]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_traffic_light_detector.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox_s_car_ped_tl_detector_960_960_batch_1.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/car_ped_tl_detector_labels.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompressor_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
Messages
Services
Plugins
Recent questions tagged autoware_tensorrt_yolox at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Dan Umeda
- Manato Hirabayashi
- Kotaro Uetake
- Masato Saeki
Authors
- Daisuke Nishimatsu
autoware_tensorrt_yolox
Purpose
This package detects target objects e.g., cars, trucks, bicycles, and pedestrians and segment target objects such as cars, trucks, buses and pedestrian, building, vegetation, road, sidewalk on a image based on YOLOX model with multi-header structure.
Additionally, the package also supports traffic light detection by switching onnx file which target classes listed on respective label_file
. Currently 0: unknown
, 1: car_traffic_light
and 2: pedestrian_traffic_light
.
Inner-workings / Algorithms
Cite
Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, Jian Sun, “YOLOX: Exceeding YOLO Series in 2021”, arXiv preprint arXiv:2107.08430, 2021 [ref]
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
in/image |
sensor_msgs/Image |
The input image |
Output
Name | Type | Description |
---|---|---|
out/objects |
tier4_perception_msgs/DetectedObjectsWithFeature |
The detected objects or traffic light with 2D bounding boxes |
out/image |
sensor_msgs/Image |
The image with 2D bounding boxes for visualization |
out/mask |
sensor_msgs/Image |
The semantic segmentation mask (only effective for semseg model) |
out/color_mask |
sensor_msgs/Image |
The colorized image of semantic segmentation mask for visualization (only effective for semseg model) |
Parameters
yolox_s_plus_opt
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_s_plus_opt.schema.json”) }}
yolox_tiny
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_tiny.schema.json”) }}
yolox_traffic_light_detector
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_traffic_light_detector.schema.json”) }}
Assumptions / Known limits
The label contained in detected 2D bounding boxes (i.e., out/objects
) will be either one of the followings:
- CAR
- PEDESTRIAN (“PERSON” will also be categorized as “PEDESTRIAN”)
- BUS
- TRUCK
- BICYCLE
- MOTORCYCLE
or
- UNKNOWN
- CAR_TRAFFIC_LIGHT
- PEDESTRIAN_TRAFFIC_LIGHT
for traffic light detector onnx model.
If other labels (case insensitive) are contained in the file specified via the label_file
parameter,
those are labeled as UNKNOWN
, while detected rectangles are drawn in the visualization result (out/image
).
The semantic segmentation mask is a gray image whose each pixel is index of one following class:
index | semantic name |
---|---|
0 | road |
1 | building |
2 | wall |
3 | obstacle |
4 | traffic_light |
5 | traffic_sign |
6 | person |
7 | vehicle |
8 | bike |
9 | road |
10 | sidewalk |
11 | roadPaint |
12 | curbstone |
13 | crosswalk_others |
14 | vegetation |
15 | sky |
Onnx model
A sample model (named yolox-tiny.onnx
) is downloaded by ansible script on env preparation stage, if not, please, follow Manual downloading of artifacts.
To accelerate Non-maximum-suppression (NMS), which is one of the common post-process after object detection inference,
EfficientNMS_TRT
module is attached after the ordinal YOLOX (tiny) network.
The EfficientNMS_TRT
module contains fixed values for score_threshold
and nms_threshold
in it,
hence these parameters are ignored when users specify ONNX models including this module.
This package accepts both EfficientNMS_TRT
attached ONNXs and models published from the official YOLOX repository (we referred to them as “plain” models).
File truncated at 100 lines see the full file
Changelog for package autoware_tensorrt_yolox
0.47.0 (2025-08-11)
0.46.0 (2025-06-20)
0.45.0 (2025-05-22)
-
Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
-
chore: perception code owner update (#10645)
- chore: update maintainers in multiple perception packages
* Revert "chore: update maintainers in multiple perception packages" This reverts commit f2838c33d6cd82bd032039e2a12b9cb8ba6eb584.
- chore: update maintainers in multiple perception packages
* chore: add Kok Seang Tan as maintainer in multiple perception packages ---------
-
feat(autoware_tensorrt_yolox): added target architectures for yolox (#10611)
- chore: added target architectures for yolox
- chore: mistook the compute capabilities of edge devices
* chore: cspell ---------
-
Contributors: Kenzo Lobos Tsunekawa, Taekjin LEE, TaikiYamada4
0.44.2 (2025-06-10)
0.44.1 (2025-05-01)
0.44.0 (2025-04-18)
- Merge remote-tracking branch 'origin/main' into humble
- feat(tensorrt_yolox): add autoware_utils packages (#10460) Co-authored-by: t4-adc <<grp-rd-1-adc-admin@tier4.jp>>
- fix(autoware_tensorrt_yolox): explicitly install shared library (#10454)
- Contributors: Kazunori-Nakajima, Manato Hirabayashi, Ryohsuke Mitsudome
0.43.0 (2025-03-21)
-
Merge remote-tracking branch 'origin/main' into chore/bump-version-0.43
-
chore: rename from [autoware.universe]{.title-ref} to [autoware_universe]{.title-ref} (#10306)
-
chore(perception): refactor perception launch (#10186)
- fundamental change
- style(pre-commit): autofix
- fix typo
- fix params and modify some packages
- pre-commit
- fix
- fix spell check
- fix typo
- integrate model and label path
- style(pre-commit): autofix
- for pre-commit
- run pre-commit
- for awsim
- for simulatior
- style(pre-commit): autofix
- fix grammer in launcher
- add schema for yolox_tlr
- style(pre-commit): autofix
- fix file name
- fix
- rename
- modify arg name to
- fix typo
- change param name
- style(pre-commit): autofix
* chore
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Shintaro Tomie <<58775300+Shin-kyoto@users.noreply.github.com>> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>
-
refactor: add autoware_cuda_dependency_meta (#10073)
-
Contributors: Esteve Fernandez, Hayato Mizushima, Masato Saeki,
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Name |
---|
libopencv-dev |
Dependant Packages
Launch files
- launch/multiple_yolox.launch.xml
-
- image_raw0 [default: /image_raw0]
- image_raw1 [default: ]
- image_raw2 [default: ]
- image_raw3 [default: ]
- image_raw4 [default: ]
- image_raw5 [default: ]
- image_raw6 [default: ]
- image_raw7 [default: ]
- image_number [default: 1]
- output_topic [default: rois]
- launch/yolox.launch.xml
-
- yolox_node_name [default: tensorrt_yolox]
- image_transport_decompressor_node_name [default: image_transport_decompressor_node]
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- output/mask [default: /perception/object_recognition/detection/mask0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_s_plus_opt.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-sPlus-opt-pseudoV2-T4-960x960-T4-seg16cls.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompress_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_s_plus_opt.launch.xml
-
- yolox_node_name [default: tensorrt_yolox]
- image_transport_decompressor_node_name [default: image_transport_decompressor_node]
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- output/mask [default: /perception/object_recognition/detection/mask0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_s_plus_opt.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-sPlus-opt-pseudoV2-T4-960x960-T4-seg16cls.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompress_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_tiny.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_tiny.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-tiny.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompressor_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_traffic_light_detector.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera6/image_raw]
- output/objects [default: /perception/traffic_light_recognition/camera6/detection/rois]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_traffic_light_detector.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox_s_car_ped_tl_detector_960_960_batch_1.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/car_ped_tl_detector_labels.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompressor_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
Messages
Services
Plugins
Recent questions tagged autoware_tensorrt_yolox at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Dan Umeda
- Manato Hirabayashi
- Kotaro Uetake
- Masato Saeki
Authors
- Daisuke Nishimatsu
autoware_tensorrt_yolox
Purpose
This package detects target objects e.g., cars, trucks, bicycles, and pedestrians and segment target objects such as cars, trucks, buses and pedestrian, building, vegetation, road, sidewalk on a image based on YOLOX model with multi-header structure.
Additionally, the package also supports traffic light detection by switching onnx file which target classes listed on respective label_file
. Currently 0: unknown
, 1: car_traffic_light
and 2: pedestrian_traffic_light
.
Inner-workings / Algorithms
Cite
Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, Jian Sun, “YOLOX: Exceeding YOLO Series in 2021”, arXiv preprint arXiv:2107.08430, 2021 [ref]
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
in/image |
sensor_msgs/Image |
The input image |
Output
Name | Type | Description |
---|---|---|
out/objects |
tier4_perception_msgs/DetectedObjectsWithFeature |
The detected objects or traffic light with 2D bounding boxes |
out/image |
sensor_msgs/Image |
The image with 2D bounding boxes for visualization |
out/mask |
sensor_msgs/Image |
The semantic segmentation mask (only effective for semseg model) |
out/color_mask |
sensor_msgs/Image |
The colorized image of semantic segmentation mask for visualization (only effective for semseg model) |
Parameters
yolox_s_plus_opt
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_s_plus_opt.schema.json”) }}
yolox_tiny
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_tiny.schema.json”) }}
yolox_traffic_light_detector
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_traffic_light_detector.schema.json”) }}
Assumptions / Known limits
The label contained in detected 2D bounding boxes (i.e., out/objects
) will be either one of the followings:
- CAR
- PEDESTRIAN (“PERSON” will also be categorized as “PEDESTRIAN”)
- BUS
- TRUCK
- BICYCLE
- MOTORCYCLE
or
- UNKNOWN
- CAR_TRAFFIC_LIGHT
- PEDESTRIAN_TRAFFIC_LIGHT
for traffic light detector onnx model.
If other labels (case insensitive) are contained in the file specified via the label_file
parameter,
those are labeled as UNKNOWN
, while detected rectangles are drawn in the visualization result (out/image
).
The semantic segmentation mask is a gray image whose each pixel is index of one following class:
index | semantic name |
---|---|
0 | road |
1 | building |
2 | wall |
3 | obstacle |
4 | traffic_light |
5 | traffic_sign |
6 | person |
7 | vehicle |
8 | bike |
9 | road |
10 | sidewalk |
11 | roadPaint |
12 | curbstone |
13 | crosswalk_others |
14 | vegetation |
15 | sky |
Onnx model
A sample model (named yolox-tiny.onnx
) is downloaded by ansible script on env preparation stage, if not, please, follow Manual downloading of artifacts.
To accelerate Non-maximum-suppression (NMS), which is one of the common post-process after object detection inference,
EfficientNMS_TRT
module is attached after the ordinal YOLOX (tiny) network.
The EfficientNMS_TRT
module contains fixed values for score_threshold
and nms_threshold
in it,
hence these parameters are ignored when users specify ONNX models including this module.
This package accepts both EfficientNMS_TRT
attached ONNXs and models published from the official YOLOX repository (we referred to them as “plain” models).
File truncated at 100 lines see the full file
Changelog for package autoware_tensorrt_yolox
0.47.0 (2025-08-11)
0.46.0 (2025-06-20)
0.45.0 (2025-05-22)
-
Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
-
chore: perception code owner update (#10645)
- chore: update maintainers in multiple perception packages
* Revert "chore: update maintainers in multiple perception packages" This reverts commit f2838c33d6cd82bd032039e2a12b9cb8ba6eb584.
- chore: update maintainers in multiple perception packages
* chore: add Kok Seang Tan as maintainer in multiple perception packages ---------
-
feat(autoware_tensorrt_yolox): added target architectures for yolox (#10611)
- chore: added target architectures for yolox
- chore: mistook the compute capabilities of edge devices
* chore: cspell ---------
-
Contributors: Kenzo Lobos Tsunekawa, Taekjin LEE, TaikiYamada4
0.44.2 (2025-06-10)
0.44.1 (2025-05-01)
0.44.0 (2025-04-18)
- Merge remote-tracking branch 'origin/main' into humble
- feat(tensorrt_yolox): add autoware_utils packages (#10460) Co-authored-by: t4-adc <<grp-rd-1-adc-admin@tier4.jp>>
- fix(autoware_tensorrt_yolox): explicitly install shared library (#10454)
- Contributors: Kazunori-Nakajima, Manato Hirabayashi, Ryohsuke Mitsudome
0.43.0 (2025-03-21)
-
Merge remote-tracking branch 'origin/main' into chore/bump-version-0.43
-
chore: rename from [autoware.universe]{.title-ref} to [autoware_universe]{.title-ref} (#10306)
-
chore(perception): refactor perception launch (#10186)
- fundamental change
- style(pre-commit): autofix
- fix typo
- fix params and modify some packages
- pre-commit
- fix
- fix spell check
- fix typo
- integrate model and label path
- style(pre-commit): autofix
- for pre-commit
- run pre-commit
- for awsim
- for simulatior
- style(pre-commit): autofix
- fix grammer in launcher
- add schema for yolox_tlr
- style(pre-commit): autofix
- fix file name
- fix
- rename
- modify arg name to
- fix typo
- change param name
- style(pre-commit): autofix
* chore
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Shintaro Tomie <<58775300+Shin-kyoto@users.noreply.github.com>> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>
-
refactor: add autoware_cuda_dependency_meta (#10073)
-
Contributors: Esteve Fernandez, Hayato Mizushima, Masato Saeki,
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Name |
---|
libopencv-dev |
Dependant Packages
Launch files
- launch/multiple_yolox.launch.xml
-
- image_raw0 [default: /image_raw0]
- image_raw1 [default: ]
- image_raw2 [default: ]
- image_raw3 [default: ]
- image_raw4 [default: ]
- image_raw5 [default: ]
- image_raw6 [default: ]
- image_raw7 [default: ]
- image_number [default: 1]
- output_topic [default: rois]
- launch/yolox.launch.xml
-
- yolox_node_name [default: tensorrt_yolox]
- image_transport_decompressor_node_name [default: image_transport_decompressor_node]
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- output/mask [default: /perception/object_recognition/detection/mask0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_s_plus_opt.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-sPlus-opt-pseudoV2-T4-960x960-T4-seg16cls.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompress_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_s_plus_opt.launch.xml
-
- yolox_node_name [default: tensorrt_yolox]
- image_transport_decompressor_node_name [default: image_transport_decompressor_node]
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- output/mask [default: /perception/object_recognition/detection/mask0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_s_plus_opt.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-sPlus-opt-pseudoV2-T4-960x960-T4-seg16cls.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompress_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_tiny.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_tiny.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-tiny.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompressor_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_traffic_light_detector.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera6/image_raw]
- output/objects [default: /perception/traffic_light_recognition/camera6/detection/rois]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_traffic_light_detector.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox_s_car_ped_tl_detector_960_960_batch_1.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/car_ped_tl_detector_labels.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompressor_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
Messages
Services
Plugins
Recent questions tagged autoware_tensorrt_yolox at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Dan Umeda
- Manato Hirabayashi
- Kotaro Uetake
- Masato Saeki
Authors
- Daisuke Nishimatsu
autoware_tensorrt_yolox
Purpose
This package detects target objects e.g., cars, trucks, bicycles, and pedestrians and segment target objects such as cars, trucks, buses and pedestrian, building, vegetation, road, sidewalk on a image based on YOLOX model with multi-header structure.
Additionally, the package also supports traffic light detection by switching onnx file which target classes listed on respective label_file
. Currently 0: unknown
, 1: car_traffic_light
and 2: pedestrian_traffic_light
.
Inner-workings / Algorithms
Cite
Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, Jian Sun, “YOLOX: Exceeding YOLO Series in 2021”, arXiv preprint arXiv:2107.08430, 2021 [ref]
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
in/image |
sensor_msgs/Image |
The input image |
Output
Name | Type | Description |
---|---|---|
out/objects |
tier4_perception_msgs/DetectedObjectsWithFeature |
The detected objects or traffic light with 2D bounding boxes |
out/image |
sensor_msgs/Image |
The image with 2D bounding boxes for visualization |
out/mask |
sensor_msgs/Image |
The semantic segmentation mask (only effective for semseg model) |
out/color_mask |
sensor_msgs/Image |
The colorized image of semantic segmentation mask for visualization (only effective for semseg model) |
Parameters
yolox_s_plus_opt
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_s_plus_opt.schema.json”) }}
yolox_tiny
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_tiny.schema.json”) }}
yolox_traffic_light_detector
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_traffic_light_detector.schema.json”) }}
Assumptions / Known limits
The label contained in detected 2D bounding boxes (i.e., out/objects
) will be either one of the followings:
- CAR
- PEDESTRIAN (“PERSON” will also be categorized as “PEDESTRIAN”)
- BUS
- TRUCK
- BICYCLE
- MOTORCYCLE
or
- UNKNOWN
- CAR_TRAFFIC_LIGHT
- PEDESTRIAN_TRAFFIC_LIGHT
for traffic light detector onnx model.
If other labels (case insensitive) are contained in the file specified via the label_file
parameter,
those are labeled as UNKNOWN
, while detected rectangles are drawn in the visualization result (out/image
).
The semantic segmentation mask is a gray image whose each pixel is index of one following class:
index | semantic name |
---|---|
0 | road |
1 | building |
2 | wall |
3 | obstacle |
4 | traffic_light |
5 | traffic_sign |
6 | person |
7 | vehicle |
8 | bike |
9 | road |
10 | sidewalk |
11 | roadPaint |
12 | curbstone |
13 | crosswalk_others |
14 | vegetation |
15 | sky |
Onnx model
A sample model (named yolox-tiny.onnx
) is downloaded by ansible script on env preparation stage, if not, please, follow Manual downloading of artifacts.
To accelerate Non-maximum-suppression (NMS), which is one of the common post-process after object detection inference,
EfficientNMS_TRT
module is attached after the ordinal YOLOX (tiny) network.
The EfficientNMS_TRT
module contains fixed values for score_threshold
and nms_threshold
in it,
hence these parameters are ignored when users specify ONNX models including this module.
This package accepts both EfficientNMS_TRT
attached ONNXs and models published from the official YOLOX repository (we referred to them as “plain” models).
File truncated at 100 lines see the full file
Changelog for package autoware_tensorrt_yolox
0.47.0 (2025-08-11)
0.46.0 (2025-06-20)
0.45.0 (2025-05-22)
-
Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
-
chore: perception code owner update (#10645)
- chore: update maintainers in multiple perception packages
* Revert "chore: update maintainers in multiple perception packages" This reverts commit f2838c33d6cd82bd032039e2a12b9cb8ba6eb584.
- chore: update maintainers in multiple perception packages
* chore: add Kok Seang Tan as maintainer in multiple perception packages ---------
-
feat(autoware_tensorrt_yolox): added target architectures for yolox (#10611)
- chore: added target architectures for yolox
- chore: mistook the compute capabilities of edge devices
* chore: cspell ---------
-
Contributors: Kenzo Lobos Tsunekawa, Taekjin LEE, TaikiYamada4
0.44.2 (2025-06-10)
0.44.1 (2025-05-01)
0.44.0 (2025-04-18)
- Merge remote-tracking branch 'origin/main' into humble
- feat(tensorrt_yolox): add autoware_utils packages (#10460) Co-authored-by: t4-adc <<grp-rd-1-adc-admin@tier4.jp>>
- fix(autoware_tensorrt_yolox): explicitly install shared library (#10454)
- Contributors: Kazunori-Nakajima, Manato Hirabayashi, Ryohsuke Mitsudome
0.43.0 (2025-03-21)
-
Merge remote-tracking branch 'origin/main' into chore/bump-version-0.43
-
chore: rename from [autoware.universe]{.title-ref} to [autoware_universe]{.title-ref} (#10306)
-
chore(perception): refactor perception launch (#10186)
- fundamental change
- style(pre-commit): autofix
- fix typo
- fix params and modify some packages
- pre-commit
- fix
- fix spell check
- fix typo
- integrate model and label path
- style(pre-commit): autofix
- for pre-commit
- run pre-commit
- for awsim
- for simulatior
- style(pre-commit): autofix
- fix grammer in launcher
- add schema for yolox_tlr
- style(pre-commit): autofix
- fix file name
- fix
- rename
- modify arg name to
- fix typo
- change param name
- style(pre-commit): autofix
* chore
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Shintaro Tomie <<58775300+Shin-kyoto@users.noreply.github.com>> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>
-
refactor: add autoware_cuda_dependency_meta (#10073)
-
Contributors: Esteve Fernandez, Hayato Mizushima, Masato Saeki,
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Name |
---|
libopencv-dev |
Dependant Packages
Launch files
- launch/multiple_yolox.launch.xml
-
- image_raw0 [default: /image_raw0]
- image_raw1 [default: ]
- image_raw2 [default: ]
- image_raw3 [default: ]
- image_raw4 [default: ]
- image_raw5 [default: ]
- image_raw6 [default: ]
- image_raw7 [default: ]
- image_number [default: 1]
- output_topic [default: rois]
- launch/yolox.launch.xml
-
- yolox_node_name [default: tensorrt_yolox]
- image_transport_decompressor_node_name [default: image_transport_decompressor_node]
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- output/mask [default: /perception/object_recognition/detection/mask0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_s_plus_opt.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-sPlus-opt-pseudoV2-T4-960x960-T4-seg16cls.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompress_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_s_plus_opt.launch.xml
-
- yolox_node_name [default: tensorrt_yolox]
- image_transport_decompressor_node_name [default: image_transport_decompressor_node]
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- output/mask [default: /perception/object_recognition/detection/mask0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_s_plus_opt.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-sPlus-opt-pseudoV2-T4-960x960-T4-seg16cls.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompress_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_tiny.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_tiny.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-tiny.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompressor_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_traffic_light_detector.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera6/image_raw]
- output/objects [default: /perception/traffic_light_recognition/camera6/detection/rois]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_traffic_light_detector.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox_s_car_ped_tl_detector_960_960_batch_1.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/car_ped_tl_detector_labels.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompressor_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
Messages
Services
Plugins
Recent questions tagged autoware_tensorrt_yolox at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Dan Umeda
- Manato Hirabayashi
- Kotaro Uetake
- Masato Saeki
Authors
- Daisuke Nishimatsu
autoware_tensorrt_yolox
Purpose
This package detects target objects e.g., cars, trucks, bicycles, and pedestrians and segment target objects such as cars, trucks, buses and pedestrian, building, vegetation, road, sidewalk on a image based on YOLOX model with multi-header structure.
Additionally, the package also supports traffic light detection by switching onnx file which target classes listed on respective label_file
. Currently 0: unknown
, 1: car_traffic_light
and 2: pedestrian_traffic_light
.
Inner-workings / Algorithms
Cite
Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, Jian Sun, “YOLOX: Exceeding YOLO Series in 2021”, arXiv preprint arXiv:2107.08430, 2021 [ref]
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
in/image |
sensor_msgs/Image |
The input image |
Output
Name | Type | Description |
---|---|---|
out/objects |
tier4_perception_msgs/DetectedObjectsWithFeature |
The detected objects or traffic light with 2D bounding boxes |
out/image |
sensor_msgs/Image |
The image with 2D bounding boxes for visualization |
out/mask |
sensor_msgs/Image |
The semantic segmentation mask (only effective for semseg model) |
out/color_mask |
sensor_msgs/Image |
The colorized image of semantic segmentation mask for visualization (only effective for semseg model) |
Parameters
yolox_s_plus_opt
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_s_plus_opt.schema.json”) }}
yolox_tiny
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_tiny.schema.json”) }}
yolox_traffic_light_detector
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_traffic_light_detector.schema.json”) }}
Assumptions / Known limits
The label contained in detected 2D bounding boxes (i.e., out/objects
) will be either one of the followings:
- CAR
- PEDESTRIAN (“PERSON” will also be categorized as “PEDESTRIAN”)
- BUS
- TRUCK
- BICYCLE
- MOTORCYCLE
or
- UNKNOWN
- CAR_TRAFFIC_LIGHT
- PEDESTRIAN_TRAFFIC_LIGHT
for traffic light detector onnx model.
If other labels (case insensitive) are contained in the file specified via the label_file
parameter,
those are labeled as UNKNOWN
, while detected rectangles are drawn in the visualization result (out/image
).
The semantic segmentation mask is a gray image whose each pixel is index of one following class:
index | semantic name |
---|---|
0 | road |
1 | building |
2 | wall |
3 | obstacle |
4 | traffic_light |
5 | traffic_sign |
6 | person |
7 | vehicle |
8 | bike |
9 | road |
10 | sidewalk |
11 | roadPaint |
12 | curbstone |
13 | crosswalk_others |
14 | vegetation |
15 | sky |
Onnx model
A sample model (named yolox-tiny.onnx
) is downloaded by ansible script on env preparation stage, if not, please, follow Manual downloading of artifacts.
To accelerate Non-maximum-suppression (NMS), which is one of the common post-process after object detection inference,
EfficientNMS_TRT
module is attached after the ordinal YOLOX (tiny) network.
The EfficientNMS_TRT
module contains fixed values for score_threshold
and nms_threshold
in it,
hence these parameters are ignored when users specify ONNX models including this module.
This package accepts both EfficientNMS_TRT
attached ONNXs and models published from the official YOLOX repository (we referred to them as “plain” models).
File truncated at 100 lines see the full file
Changelog for package autoware_tensorrt_yolox
0.47.0 (2025-08-11)
0.46.0 (2025-06-20)
0.45.0 (2025-05-22)
-
Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
-
chore: perception code owner update (#10645)
- chore: update maintainers in multiple perception packages
* Revert "chore: update maintainers in multiple perception packages" This reverts commit f2838c33d6cd82bd032039e2a12b9cb8ba6eb584.
- chore: update maintainers in multiple perception packages
* chore: add Kok Seang Tan as maintainer in multiple perception packages ---------
-
feat(autoware_tensorrt_yolox): added target architectures for yolox (#10611)
- chore: added target architectures for yolox
- chore: mistook the compute capabilities of edge devices
* chore: cspell ---------
-
Contributors: Kenzo Lobos Tsunekawa, Taekjin LEE, TaikiYamada4
0.44.2 (2025-06-10)
0.44.1 (2025-05-01)
0.44.0 (2025-04-18)
- Merge remote-tracking branch 'origin/main' into humble
- feat(tensorrt_yolox): add autoware_utils packages (#10460) Co-authored-by: t4-adc <<grp-rd-1-adc-admin@tier4.jp>>
- fix(autoware_tensorrt_yolox): explicitly install shared library (#10454)
- Contributors: Kazunori-Nakajima, Manato Hirabayashi, Ryohsuke Mitsudome
0.43.0 (2025-03-21)
-
Merge remote-tracking branch 'origin/main' into chore/bump-version-0.43
-
chore: rename from [autoware.universe]{.title-ref} to [autoware_universe]{.title-ref} (#10306)
-
chore(perception): refactor perception launch (#10186)
- fundamental change
- style(pre-commit): autofix
- fix typo
- fix params and modify some packages
- pre-commit
- fix
- fix spell check
- fix typo
- integrate model and label path
- style(pre-commit): autofix
- for pre-commit
- run pre-commit
- for awsim
- for simulatior
- style(pre-commit): autofix
- fix grammer in launcher
- add schema for yolox_tlr
- style(pre-commit): autofix
- fix file name
- fix
- rename
- modify arg name to
- fix typo
- change param name
- style(pre-commit): autofix
* chore
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Shintaro Tomie <<58775300+Shin-kyoto@users.noreply.github.com>> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>
-
refactor: add autoware_cuda_dependency_meta (#10073)
-
Contributors: Esteve Fernandez, Hayato Mizushima, Masato Saeki,
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Name |
---|
libopencv-dev |
Dependant Packages
Launch files
- launch/multiple_yolox.launch.xml
-
- image_raw0 [default: /image_raw0]
- image_raw1 [default: ]
- image_raw2 [default: ]
- image_raw3 [default: ]
- image_raw4 [default: ]
- image_raw5 [default: ]
- image_raw6 [default: ]
- image_raw7 [default: ]
- image_number [default: 1]
- output_topic [default: rois]
- launch/yolox.launch.xml
-
- yolox_node_name [default: tensorrt_yolox]
- image_transport_decompressor_node_name [default: image_transport_decompressor_node]
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- output/mask [default: /perception/object_recognition/detection/mask0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_s_plus_opt.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-sPlus-opt-pseudoV2-T4-960x960-T4-seg16cls.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompress_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_s_plus_opt.launch.xml
-
- yolox_node_name [default: tensorrt_yolox]
- image_transport_decompressor_node_name [default: image_transport_decompressor_node]
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- output/mask [default: /perception/object_recognition/detection/mask0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_s_plus_opt.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-sPlus-opt-pseudoV2-T4-960x960-T4-seg16cls.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompress_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_tiny.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_tiny.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-tiny.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompressor_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_traffic_light_detector.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera6/image_raw]
- output/objects [default: /perception/traffic_light_recognition/camera6/detection/rois]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_traffic_light_detector.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox_s_car_ped_tl_detector_960_960_batch_1.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/car_ped_tl_detector_labels.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompressor_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
Messages
Services
Plugins
Recent questions tagged autoware_tensorrt_yolox at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.47.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-08-16 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Dan Umeda
- Manato Hirabayashi
- Kotaro Uetake
- Masato Saeki
Authors
- Daisuke Nishimatsu
autoware_tensorrt_yolox
Purpose
This package detects target objects e.g., cars, trucks, bicycles, and pedestrians and segment target objects such as cars, trucks, buses and pedestrian, building, vegetation, road, sidewalk on a image based on YOLOX model with multi-header structure.
Additionally, the package also supports traffic light detection by switching onnx file which target classes listed on respective label_file
. Currently 0: unknown
, 1: car_traffic_light
and 2: pedestrian_traffic_light
.
Inner-workings / Algorithms
Cite
Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, Jian Sun, “YOLOX: Exceeding YOLO Series in 2021”, arXiv preprint arXiv:2107.08430, 2021 [ref]
Inputs / Outputs
Input
Name | Type | Description |
---|---|---|
in/image |
sensor_msgs/Image |
The input image |
Output
Name | Type | Description |
---|---|---|
out/objects |
tier4_perception_msgs/DetectedObjectsWithFeature |
The detected objects or traffic light with 2D bounding boxes |
out/image |
sensor_msgs/Image |
The image with 2D bounding boxes for visualization |
out/mask |
sensor_msgs/Image |
The semantic segmentation mask (only effective for semseg model) |
out/color_mask |
sensor_msgs/Image |
The colorized image of semantic segmentation mask for visualization (only effective for semseg model) |
Parameters
yolox_s_plus_opt
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_s_plus_opt.schema.json”) }}
yolox_tiny
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_tiny.schema.json”) }}
yolox_traffic_light_detector
{{ json_to_markdown(“perception/autoware_tensorrt_yolox/schema/yolox_traffic_light_detector.schema.json”) }}
Assumptions / Known limits
The label contained in detected 2D bounding boxes (i.e., out/objects
) will be either one of the followings:
- CAR
- PEDESTRIAN (“PERSON” will also be categorized as “PEDESTRIAN”)
- BUS
- TRUCK
- BICYCLE
- MOTORCYCLE
or
- UNKNOWN
- CAR_TRAFFIC_LIGHT
- PEDESTRIAN_TRAFFIC_LIGHT
for traffic light detector onnx model.
If other labels (case insensitive) are contained in the file specified via the label_file
parameter,
those are labeled as UNKNOWN
, while detected rectangles are drawn in the visualization result (out/image
).
The semantic segmentation mask is a gray image whose each pixel is index of one following class:
index | semantic name |
---|---|
0 | road |
1 | building |
2 | wall |
3 | obstacle |
4 | traffic_light |
5 | traffic_sign |
6 | person |
7 | vehicle |
8 | bike |
9 | road |
10 | sidewalk |
11 | roadPaint |
12 | curbstone |
13 | crosswalk_others |
14 | vegetation |
15 | sky |
Onnx model
A sample model (named yolox-tiny.onnx
) is downloaded by ansible script on env preparation stage, if not, please, follow Manual downloading of artifacts.
To accelerate Non-maximum-suppression (NMS), which is one of the common post-process after object detection inference,
EfficientNMS_TRT
module is attached after the ordinal YOLOX (tiny) network.
The EfficientNMS_TRT
module contains fixed values for score_threshold
and nms_threshold
in it,
hence these parameters are ignored when users specify ONNX models including this module.
This package accepts both EfficientNMS_TRT
attached ONNXs and models published from the official YOLOX repository (we referred to them as “plain” models).
File truncated at 100 lines see the full file
Changelog for package autoware_tensorrt_yolox
0.47.0 (2025-08-11)
0.46.0 (2025-06-20)
0.45.0 (2025-05-22)
-
Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
-
chore: perception code owner update (#10645)
- chore: update maintainers in multiple perception packages
* Revert "chore: update maintainers in multiple perception packages" This reverts commit f2838c33d6cd82bd032039e2a12b9cb8ba6eb584.
- chore: update maintainers in multiple perception packages
* chore: add Kok Seang Tan as maintainer in multiple perception packages ---------
-
feat(autoware_tensorrt_yolox): added target architectures for yolox (#10611)
- chore: added target architectures for yolox
- chore: mistook the compute capabilities of edge devices
* chore: cspell ---------
-
Contributors: Kenzo Lobos Tsunekawa, Taekjin LEE, TaikiYamada4
0.44.2 (2025-06-10)
0.44.1 (2025-05-01)
0.44.0 (2025-04-18)
- Merge remote-tracking branch 'origin/main' into humble
- feat(tensorrt_yolox): add autoware_utils packages (#10460) Co-authored-by: t4-adc <<grp-rd-1-adc-admin@tier4.jp>>
- fix(autoware_tensorrt_yolox): explicitly install shared library (#10454)
- Contributors: Kazunori-Nakajima, Manato Hirabayashi, Ryohsuke Mitsudome
0.43.0 (2025-03-21)
-
Merge remote-tracking branch 'origin/main' into chore/bump-version-0.43
-
chore: rename from [autoware.universe]{.title-ref} to [autoware_universe]{.title-ref} (#10306)
-
chore(perception): refactor perception launch (#10186)
- fundamental change
- style(pre-commit): autofix
- fix typo
- fix params and modify some packages
- pre-commit
- fix
- fix spell check
- fix typo
- integrate model and label path
- style(pre-commit): autofix
- for pre-commit
- run pre-commit
- for awsim
- for simulatior
- style(pre-commit): autofix
- fix grammer in launcher
- add schema for yolox_tlr
- style(pre-commit): autofix
- fix file name
- fix
- rename
- modify arg name to
- fix typo
- change param name
- style(pre-commit): autofix
* chore
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Shintaro Tomie <<58775300+Shin-kyoto@users.noreply.github.com>> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>
-
refactor: add autoware_cuda_dependency_meta (#10073)
-
Contributors: Esteve Fernandez, Hayato Mizushima, Masato Saeki,
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Name |
---|
libopencv-dev |
Dependant Packages
Launch files
- launch/multiple_yolox.launch.xml
-
- image_raw0 [default: /image_raw0]
- image_raw1 [default: ]
- image_raw2 [default: ]
- image_raw3 [default: ]
- image_raw4 [default: ]
- image_raw5 [default: ]
- image_raw6 [default: ]
- image_raw7 [default: ]
- image_number [default: 1]
- output_topic [default: rois]
- launch/yolox.launch.xml
-
- yolox_node_name [default: tensorrt_yolox]
- image_transport_decompressor_node_name [default: image_transport_decompressor_node]
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- output/mask [default: /perception/object_recognition/detection/mask0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_s_plus_opt.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-sPlus-opt-pseudoV2-T4-960x960-T4-seg16cls.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompress_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_s_plus_opt.launch.xml
-
- yolox_node_name [default: tensorrt_yolox]
- image_transport_decompressor_node_name [default: image_transport_decompressor_node]
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- output/mask [default: /perception/object_recognition/detection/mask0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_s_plus_opt.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-sPlus-opt-pseudoV2-T4-960x960-T4-seg16cls.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompress_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_tiny.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera0/image_rect_color]
- output/objects [default: /perception/object_recognition/detection/rois0]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_tiny.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox-tiny.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/label.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompressor_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]
- launch/yolox_traffic_light_detector.launch.xml
-
- data_path [default: $(env HOME)/autoware_data]
- input/image [default: /sensing/camera/camera6/image_raw]
- output/objects [default: /perception/traffic_light_recognition/camera6/detection/rois]
- yolox_param_path [default: $(find-pkg-share autoware_tensorrt_yolox)/config/yolox_traffic_light_detector.param.yaml]
- model_path [default: $(var data_path)/tensorrt_yolox/yolox_s_car_ped_tl_detector_960_960_batch_1.onnx]
- label_path [default: $(var data_path)/tensorrt_yolox/car_ped_tl_detector_labels.txt]
- color_map_path [default: $(var data_path)/tensorrt_yolox/semseg_color_map.csv]
- use_decompress [default: true]
- build_only [default: false]
- decompressor_param_path [default: $(find-pkg-share autoware_image_transport_decompressor)/config/image_transport_decompressor.param.yaml]