No version for distro humble showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_motion_velocity_run_out_module package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

run out module for the motion_velocity_planner

Additional Links

No additional links.

Maintainers

  • Maxime Clement
  • Alqudah Mohammad
  • Zulfaqar Azmi

Authors

  • Maxime Clement

Run Out

Role

The run_out module adds deceleration and stop points to the ego trajectory in order to prevent collisions with objects that are moving towards the ego vehicle path.

Activation

This module is activated if the launch parameter launch_mvp_run_out_module is set to true.

Inner-workings / Algorithms

This module calculates the times when the ego vehicle and the objects are predicted to overlap each other’s trajectories. These times are then used to decide whether to stop before the overlap or not.

Next we explain the inner-workings of the module in more details.

1. Ego trajectory footprint

In this first step, the trajectory footprint is constructed from the corner points of the vehicle. 4 linestrings are constructed from the 4 corners (front left, front right, rear left, rear right) projected at each trajectory point.

At this step, the footprint size can be adjusted using the ego.lateral_margin and ego.longitudinal_margin parameters.

The following figures show the 4 corner linestrings calculated for the red trajectory.

front left front right rear left rear right
ego_front_left_footprint ego_front_right_footprint ego_rear_left_footprint ego_rear_right_footprint

These can be visualized on the debug markers with the ego_footprint_(front|rear)_(left|right) namespaces.

2. Extracting map filtering data

In the second step, we extract geometric information from the vector map that will be used to filter dynamic objects. For each object classification label, we prepare the following sets of geometries based on the parameters defined for that label (objects.{CLASSIFICATION_LABEL}):

  • polygons to ignore objects (ignore.polygon_types and ignore.lanelet_subtypes);
    • polygons for the ego trajectory footprint are also added if ignore.if_on_ego_trajectory is set to true.
  • polygons to ignore collisions (ignore_collisions.polygon_types and ignore_collisions.lanelet_subtypes);
  • segments to cut predicted paths (cut_predicted_paths.polygon_types, cut_predicted_paths.linestring_types, and cut_predicted_paths.lanelet_subtypes).
    • the rear segment of the current ego footprint is also added if cut_predicted_paths.if_crossing_ego_from_behind is set to true.
  • segments to strictly cut predicted paths (cut_predicted_paths.strict_polygon_types, cut_predicted_paths.strict_linestring_types, and cut_predicted_paths.strict_lanelet_subtypes).
    • strict cutting means that the cut is always applied, regardless of any preserved distance or duration.

The following figure shows an example where the polygons to ignore objects are shown in blue, to ignore collisions in green, and to cut predicted paths in red.

map_filtering_data

These geometries can be visualized on the debug markers with the filtering_data_(ignore_objects|ignore_collisions|cut_predicted_paths) namespaces. The classification label corresponding to the published debug markers can be selected with parameter debug.object_label.

3. Dynamic objects filtering

In this step, objects and their predicted paths are filtered based on its classification label and the corresponding parameters objects.{CLASSIFICATION_LABEL}.

An object is ignored if one of the following condition is true:

  • its classification label is not in the list defined by the objects.target_labels parameter;
  • its velocity is bellow the ignore.stopped_velocity_threshold and ignore.if_stopped is set to true;
  • its current footprint is inside one of the polygons prepared in the previous step.

However, if it was decided to stop for the object in the previous iteration, or if a collision was detected with the object, then it cannot be ignored.

If an object is not ignored, its predicted path footprints are generated similarly to the ego footprint First, we only keep predicted paths that have a confidence value above the confidence_filtering.threshold parameter. If, confidence_filtering.only_use_highest is set to true then for each object only the predicted paths that have the higher confidence value are kept. Next, the remaining predicted paths are cut according to the segments prepared in the previous step.

To guarantee that parts of the predicted paths are never ignored, parameters preserved_duration and preserved_distance can be used to set a minimum duration and/or distance that cannot be cut or ignored. This is not applied in the case of the strict cutting.

The following figures shows an example where crosswalks are used to ignore pedestrians and to cut their predicted paths.

debug markers (objects_footprints) objects of interest
objects_footprints objects_of_interest

The result of the filtering can be visualized on the debug markers with the objects_footprints namespace which shows in yellow which predicted path will be used for collision checking in the next step.

In addition, the objects of interests markers shows which objects are not ignored and the color will correspond to the decision made towards that object (green for nothing, yellow for slowdown, and red for stop).

4. Collision detection

Now that we prepared the ego trajectory footprint, the dynamic objects, and their predicted paths, we will calculate the times when they are predicted to collide.

The following operations are performed for each object that was not ignored in the previous iteration.

First, we calculate the intersections between each pair of linestrings between the ego and object footprints. For each intersection, we calculate the corresponding point, the time when ego and the object are predicted to reach that point, and the location of that point on the ego footprint (e.g., on the rear left linestring).

All these intersections are then combined into intervals representing when the overlap between the ego trajectory and object predicted paths starts and ends. An overlap is represented by the entering and exiting intersections for both ego and the object.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_motion_velocity_run_out_module

0.47.0 (2025-08-11)

  • fix(run_out): add missing ament_auto_package in CMakeList (#11096)
  • style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • feat(run_out): add parameters to select which debug markers to publish (#11082)
  • feat(run_out): add planning factors (#10892)
  • chore(run_out): add Zulfaqar Azmi as maintainer (#10896)
  • feat(run_out): add option for strict cutting of predicted paths (#10887)
  • Contributors: Maxime CLEMENT, Mete Fatih Cırıt

0.46.0 (2025-06-20)

  • Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base

  • fix(run_out): fix numerical stability in run_out interpolation (#10808)

    • fix(run_out): fix numerical stability in run_out interpolation

    * fix build ---------

  • feat(run_out): option to preserve parts of ignored predicted paths (#10754)

  • chore(run_out): add Alqudah Mohammad as maintainer (#10762)

  • fix(run_out): guard against decreasing ego trajectory times (#10746)

  • feat(autoware_motion_velocity_planner): only wait for required subscriptions (#10732)

  • Contributors: Maxime CLEMENT, Ryohsuke Mitsudome, TaikiYamada4, Yuxuan Liu

0.45.0 (2025-05-22)

  • Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
  • fix(motion_velocity_planner): add missing header (#10560)
  • fix(motion_velocity_planner): remove unused functions (#10563)
  • fix(motion_velocity_planner): remove unused function (#10564)
  • fix(motion_velocity_planner/run_out): fix tf2 include (.hpp->.h) (#10548)
  • chore(motion_velocity_run_out): add diagnostic_updater for dependency resolve (#10535)
  • feat(motion_velocity_planner): add new run_out module (#10388)
  • Contributors: Mamoru Sobue, Masaki Baba, Maxime CLEMENT, Ryuta Kambe, TaikiYamada4

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_motion_velocity_run_out_module at Robotics Stack Exchange

No version for distro jazzy showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_motion_velocity_run_out_module package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

run out module for the motion_velocity_planner

Additional Links

No additional links.

Maintainers

  • Maxime Clement
  • Alqudah Mohammad
  • Zulfaqar Azmi

Authors

  • Maxime Clement

Run Out

Role

The run_out module adds deceleration and stop points to the ego trajectory in order to prevent collisions with objects that are moving towards the ego vehicle path.

Activation

This module is activated if the launch parameter launch_mvp_run_out_module is set to true.

Inner-workings / Algorithms

This module calculates the times when the ego vehicle and the objects are predicted to overlap each other’s trajectories. These times are then used to decide whether to stop before the overlap or not.

Next we explain the inner-workings of the module in more details.

1. Ego trajectory footprint

In this first step, the trajectory footprint is constructed from the corner points of the vehicle. 4 linestrings are constructed from the 4 corners (front left, front right, rear left, rear right) projected at each trajectory point.

At this step, the footprint size can be adjusted using the ego.lateral_margin and ego.longitudinal_margin parameters.

The following figures show the 4 corner linestrings calculated for the red trajectory.

front left front right rear left rear right
ego_front_left_footprint ego_front_right_footprint ego_rear_left_footprint ego_rear_right_footprint

These can be visualized on the debug markers with the ego_footprint_(front|rear)_(left|right) namespaces.

2. Extracting map filtering data

In the second step, we extract geometric information from the vector map that will be used to filter dynamic objects. For each object classification label, we prepare the following sets of geometries based on the parameters defined for that label (objects.{CLASSIFICATION_LABEL}):

  • polygons to ignore objects (ignore.polygon_types and ignore.lanelet_subtypes);
    • polygons for the ego trajectory footprint are also added if ignore.if_on_ego_trajectory is set to true.
  • polygons to ignore collisions (ignore_collisions.polygon_types and ignore_collisions.lanelet_subtypes);
  • segments to cut predicted paths (cut_predicted_paths.polygon_types, cut_predicted_paths.linestring_types, and cut_predicted_paths.lanelet_subtypes).
    • the rear segment of the current ego footprint is also added if cut_predicted_paths.if_crossing_ego_from_behind is set to true.
  • segments to strictly cut predicted paths (cut_predicted_paths.strict_polygon_types, cut_predicted_paths.strict_linestring_types, and cut_predicted_paths.strict_lanelet_subtypes).
    • strict cutting means that the cut is always applied, regardless of any preserved distance or duration.

The following figure shows an example where the polygons to ignore objects are shown in blue, to ignore collisions in green, and to cut predicted paths in red.

map_filtering_data

These geometries can be visualized on the debug markers with the filtering_data_(ignore_objects|ignore_collisions|cut_predicted_paths) namespaces. The classification label corresponding to the published debug markers can be selected with parameter debug.object_label.

3. Dynamic objects filtering

In this step, objects and their predicted paths are filtered based on its classification label and the corresponding parameters objects.{CLASSIFICATION_LABEL}.

An object is ignored if one of the following condition is true:

  • its classification label is not in the list defined by the objects.target_labels parameter;
  • its velocity is bellow the ignore.stopped_velocity_threshold and ignore.if_stopped is set to true;
  • its current footprint is inside one of the polygons prepared in the previous step.

However, if it was decided to stop for the object in the previous iteration, or if a collision was detected with the object, then it cannot be ignored.

If an object is not ignored, its predicted path footprints are generated similarly to the ego footprint First, we only keep predicted paths that have a confidence value above the confidence_filtering.threshold parameter. If, confidence_filtering.only_use_highest is set to true then for each object only the predicted paths that have the higher confidence value are kept. Next, the remaining predicted paths are cut according to the segments prepared in the previous step.

To guarantee that parts of the predicted paths are never ignored, parameters preserved_duration and preserved_distance can be used to set a minimum duration and/or distance that cannot be cut or ignored. This is not applied in the case of the strict cutting.

The following figures shows an example where crosswalks are used to ignore pedestrians and to cut their predicted paths.

debug markers (objects_footprints) objects of interest
objects_footprints objects_of_interest

The result of the filtering can be visualized on the debug markers with the objects_footprints namespace which shows in yellow which predicted path will be used for collision checking in the next step.

In addition, the objects of interests markers shows which objects are not ignored and the color will correspond to the decision made towards that object (green for nothing, yellow for slowdown, and red for stop).

4. Collision detection

Now that we prepared the ego trajectory footprint, the dynamic objects, and their predicted paths, we will calculate the times when they are predicted to collide.

The following operations are performed for each object that was not ignored in the previous iteration.

First, we calculate the intersections between each pair of linestrings between the ego and object footprints. For each intersection, we calculate the corresponding point, the time when ego and the object are predicted to reach that point, and the location of that point on the ego footprint (e.g., on the rear left linestring).

All these intersections are then combined into intervals representing when the overlap between the ego trajectory and object predicted paths starts and ends. An overlap is represented by the entering and exiting intersections for both ego and the object.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_motion_velocity_run_out_module

0.47.0 (2025-08-11)

  • fix(run_out): add missing ament_auto_package in CMakeList (#11096)
  • style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • feat(run_out): add parameters to select which debug markers to publish (#11082)
  • feat(run_out): add planning factors (#10892)
  • chore(run_out): add Zulfaqar Azmi as maintainer (#10896)
  • feat(run_out): add option for strict cutting of predicted paths (#10887)
  • Contributors: Maxime CLEMENT, Mete Fatih Cırıt

0.46.0 (2025-06-20)

  • Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base

  • fix(run_out): fix numerical stability in run_out interpolation (#10808)

    • fix(run_out): fix numerical stability in run_out interpolation

    * fix build ---------

  • feat(run_out): option to preserve parts of ignored predicted paths (#10754)

  • chore(run_out): add Alqudah Mohammad as maintainer (#10762)

  • fix(run_out): guard against decreasing ego trajectory times (#10746)

  • feat(autoware_motion_velocity_planner): only wait for required subscriptions (#10732)

  • Contributors: Maxime CLEMENT, Ryohsuke Mitsudome, TaikiYamada4, Yuxuan Liu

0.45.0 (2025-05-22)

  • Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
  • fix(motion_velocity_planner): add missing header (#10560)
  • fix(motion_velocity_planner): remove unused functions (#10563)
  • fix(motion_velocity_planner): remove unused function (#10564)
  • fix(motion_velocity_planner/run_out): fix tf2 include (.hpp->.h) (#10548)
  • chore(motion_velocity_run_out): add diagnostic_updater for dependency resolve (#10535)
  • feat(motion_velocity_planner): add new run_out module (#10388)
  • Contributors: Mamoru Sobue, Masaki Baba, Maxime CLEMENT, Ryuta Kambe, TaikiYamada4

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_motion_velocity_run_out_module at Robotics Stack Exchange

No version for distro kilted showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_motion_velocity_run_out_module package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

run out module for the motion_velocity_planner

Additional Links

No additional links.

Maintainers

  • Maxime Clement
  • Alqudah Mohammad
  • Zulfaqar Azmi

Authors

  • Maxime Clement

Run Out

Role

The run_out module adds deceleration and stop points to the ego trajectory in order to prevent collisions with objects that are moving towards the ego vehicle path.

Activation

This module is activated if the launch parameter launch_mvp_run_out_module is set to true.

Inner-workings / Algorithms

This module calculates the times when the ego vehicle and the objects are predicted to overlap each other’s trajectories. These times are then used to decide whether to stop before the overlap or not.

Next we explain the inner-workings of the module in more details.

1. Ego trajectory footprint

In this first step, the trajectory footprint is constructed from the corner points of the vehicle. 4 linestrings are constructed from the 4 corners (front left, front right, rear left, rear right) projected at each trajectory point.

At this step, the footprint size can be adjusted using the ego.lateral_margin and ego.longitudinal_margin parameters.

The following figures show the 4 corner linestrings calculated for the red trajectory.

front left front right rear left rear right
ego_front_left_footprint ego_front_right_footprint ego_rear_left_footprint ego_rear_right_footprint

These can be visualized on the debug markers with the ego_footprint_(front|rear)_(left|right) namespaces.

2. Extracting map filtering data

In the second step, we extract geometric information from the vector map that will be used to filter dynamic objects. For each object classification label, we prepare the following sets of geometries based on the parameters defined for that label (objects.{CLASSIFICATION_LABEL}):

  • polygons to ignore objects (ignore.polygon_types and ignore.lanelet_subtypes);
    • polygons for the ego trajectory footprint are also added if ignore.if_on_ego_trajectory is set to true.
  • polygons to ignore collisions (ignore_collisions.polygon_types and ignore_collisions.lanelet_subtypes);
  • segments to cut predicted paths (cut_predicted_paths.polygon_types, cut_predicted_paths.linestring_types, and cut_predicted_paths.lanelet_subtypes).
    • the rear segment of the current ego footprint is also added if cut_predicted_paths.if_crossing_ego_from_behind is set to true.
  • segments to strictly cut predicted paths (cut_predicted_paths.strict_polygon_types, cut_predicted_paths.strict_linestring_types, and cut_predicted_paths.strict_lanelet_subtypes).
    • strict cutting means that the cut is always applied, regardless of any preserved distance or duration.

The following figure shows an example where the polygons to ignore objects are shown in blue, to ignore collisions in green, and to cut predicted paths in red.

map_filtering_data

These geometries can be visualized on the debug markers with the filtering_data_(ignore_objects|ignore_collisions|cut_predicted_paths) namespaces. The classification label corresponding to the published debug markers can be selected with parameter debug.object_label.

3. Dynamic objects filtering

In this step, objects and their predicted paths are filtered based on its classification label and the corresponding parameters objects.{CLASSIFICATION_LABEL}.

An object is ignored if one of the following condition is true:

  • its classification label is not in the list defined by the objects.target_labels parameter;
  • its velocity is bellow the ignore.stopped_velocity_threshold and ignore.if_stopped is set to true;
  • its current footprint is inside one of the polygons prepared in the previous step.

However, if it was decided to stop for the object in the previous iteration, or if a collision was detected with the object, then it cannot be ignored.

If an object is not ignored, its predicted path footprints are generated similarly to the ego footprint First, we only keep predicted paths that have a confidence value above the confidence_filtering.threshold parameter. If, confidence_filtering.only_use_highest is set to true then for each object only the predicted paths that have the higher confidence value are kept. Next, the remaining predicted paths are cut according to the segments prepared in the previous step.

To guarantee that parts of the predicted paths are never ignored, parameters preserved_duration and preserved_distance can be used to set a minimum duration and/or distance that cannot be cut or ignored. This is not applied in the case of the strict cutting.

The following figures shows an example where crosswalks are used to ignore pedestrians and to cut their predicted paths.

debug markers (objects_footprints) objects of interest
objects_footprints objects_of_interest

The result of the filtering can be visualized on the debug markers with the objects_footprints namespace which shows in yellow which predicted path will be used for collision checking in the next step.

In addition, the objects of interests markers shows which objects are not ignored and the color will correspond to the decision made towards that object (green for nothing, yellow for slowdown, and red for stop).

4. Collision detection

Now that we prepared the ego trajectory footprint, the dynamic objects, and their predicted paths, we will calculate the times when they are predicted to collide.

The following operations are performed for each object that was not ignored in the previous iteration.

First, we calculate the intersections between each pair of linestrings between the ego and object footprints. For each intersection, we calculate the corresponding point, the time when ego and the object are predicted to reach that point, and the location of that point on the ego footprint (e.g., on the rear left linestring).

All these intersections are then combined into intervals representing when the overlap between the ego trajectory and object predicted paths starts and ends. An overlap is represented by the entering and exiting intersections for both ego and the object.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_motion_velocity_run_out_module

0.47.0 (2025-08-11)

  • fix(run_out): add missing ament_auto_package in CMakeList (#11096)
  • style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • feat(run_out): add parameters to select which debug markers to publish (#11082)
  • feat(run_out): add planning factors (#10892)
  • chore(run_out): add Zulfaqar Azmi as maintainer (#10896)
  • feat(run_out): add option for strict cutting of predicted paths (#10887)
  • Contributors: Maxime CLEMENT, Mete Fatih Cırıt

0.46.0 (2025-06-20)

  • Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base

  • fix(run_out): fix numerical stability in run_out interpolation (#10808)

    • fix(run_out): fix numerical stability in run_out interpolation

    * fix build ---------

  • feat(run_out): option to preserve parts of ignored predicted paths (#10754)

  • chore(run_out): add Alqudah Mohammad as maintainer (#10762)

  • fix(run_out): guard against decreasing ego trajectory times (#10746)

  • feat(autoware_motion_velocity_planner): only wait for required subscriptions (#10732)

  • Contributors: Maxime CLEMENT, Ryohsuke Mitsudome, TaikiYamada4, Yuxuan Liu

0.45.0 (2025-05-22)

  • Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
  • fix(motion_velocity_planner): add missing header (#10560)
  • fix(motion_velocity_planner): remove unused functions (#10563)
  • fix(motion_velocity_planner): remove unused function (#10564)
  • fix(motion_velocity_planner/run_out): fix tf2 include (.hpp->.h) (#10548)
  • chore(motion_velocity_run_out): add diagnostic_updater for dependency resolve (#10535)
  • feat(motion_velocity_planner): add new run_out module (#10388)
  • Contributors: Mamoru Sobue, Masaki Baba, Maxime CLEMENT, Ryuta Kambe, TaikiYamada4

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_motion_velocity_run_out_module at Robotics Stack Exchange

No version for distro rolling showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_motion_velocity_run_out_module package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

run out module for the motion_velocity_planner

Additional Links

No additional links.

Maintainers

  • Maxime Clement
  • Alqudah Mohammad
  • Zulfaqar Azmi

Authors

  • Maxime Clement

Run Out

Role

The run_out module adds deceleration and stop points to the ego trajectory in order to prevent collisions with objects that are moving towards the ego vehicle path.

Activation

This module is activated if the launch parameter launch_mvp_run_out_module is set to true.

Inner-workings / Algorithms

This module calculates the times when the ego vehicle and the objects are predicted to overlap each other’s trajectories. These times are then used to decide whether to stop before the overlap or not.

Next we explain the inner-workings of the module in more details.

1. Ego trajectory footprint

In this first step, the trajectory footprint is constructed from the corner points of the vehicle. 4 linestrings are constructed from the 4 corners (front left, front right, rear left, rear right) projected at each trajectory point.

At this step, the footprint size can be adjusted using the ego.lateral_margin and ego.longitudinal_margin parameters.

The following figures show the 4 corner linestrings calculated for the red trajectory.

front left front right rear left rear right
ego_front_left_footprint ego_front_right_footprint ego_rear_left_footprint ego_rear_right_footprint

These can be visualized on the debug markers with the ego_footprint_(front|rear)_(left|right) namespaces.

2. Extracting map filtering data

In the second step, we extract geometric information from the vector map that will be used to filter dynamic objects. For each object classification label, we prepare the following sets of geometries based on the parameters defined for that label (objects.{CLASSIFICATION_LABEL}):

  • polygons to ignore objects (ignore.polygon_types and ignore.lanelet_subtypes);
    • polygons for the ego trajectory footprint are also added if ignore.if_on_ego_trajectory is set to true.
  • polygons to ignore collisions (ignore_collisions.polygon_types and ignore_collisions.lanelet_subtypes);
  • segments to cut predicted paths (cut_predicted_paths.polygon_types, cut_predicted_paths.linestring_types, and cut_predicted_paths.lanelet_subtypes).
    • the rear segment of the current ego footprint is also added if cut_predicted_paths.if_crossing_ego_from_behind is set to true.
  • segments to strictly cut predicted paths (cut_predicted_paths.strict_polygon_types, cut_predicted_paths.strict_linestring_types, and cut_predicted_paths.strict_lanelet_subtypes).
    • strict cutting means that the cut is always applied, regardless of any preserved distance or duration.

The following figure shows an example where the polygons to ignore objects are shown in blue, to ignore collisions in green, and to cut predicted paths in red.

map_filtering_data

These geometries can be visualized on the debug markers with the filtering_data_(ignore_objects|ignore_collisions|cut_predicted_paths) namespaces. The classification label corresponding to the published debug markers can be selected with parameter debug.object_label.

3. Dynamic objects filtering

In this step, objects and their predicted paths are filtered based on its classification label and the corresponding parameters objects.{CLASSIFICATION_LABEL}.

An object is ignored if one of the following condition is true:

  • its classification label is not in the list defined by the objects.target_labels parameter;
  • its velocity is bellow the ignore.stopped_velocity_threshold and ignore.if_stopped is set to true;
  • its current footprint is inside one of the polygons prepared in the previous step.

However, if it was decided to stop for the object in the previous iteration, or if a collision was detected with the object, then it cannot be ignored.

If an object is not ignored, its predicted path footprints are generated similarly to the ego footprint First, we only keep predicted paths that have a confidence value above the confidence_filtering.threshold parameter. If, confidence_filtering.only_use_highest is set to true then for each object only the predicted paths that have the higher confidence value are kept. Next, the remaining predicted paths are cut according to the segments prepared in the previous step.

To guarantee that parts of the predicted paths are never ignored, parameters preserved_duration and preserved_distance can be used to set a minimum duration and/or distance that cannot be cut or ignored. This is not applied in the case of the strict cutting.

The following figures shows an example where crosswalks are used to ignore pedestrians and to cut their predicted paths.

debug markers (objects_footprints) objects of interest
objects_footprints objects_of_interest

The result of the filtering can be visualized on the debug markers with the objects_footprints namespace which shows in yellow which predicted path will be used for collision checking in the next step.

In addition, the objects of interests markers shows which objects are not ignored and the color will correspond to the decision made towards that object (green for nothing, yellow for slowdown, and red for stop).

4. Collision detection

Now that we prepared the ego trajectory footprint, the dynamic objects, and their predicted paths, we will calculate the times when they are predicted to collide.

The following operations are performed for each object that was not ignored in the previous iteration.

First, we calculate the intersections between each pair of linestrings between the ego and object footprints. For each intersection, we calculate the corresponding point, the time when ego and the object are predicted to reach that point, and the location of that point on the ego footprint (e.g., on the rear left linestring).

All these intersections are then combined into intervals representing when the overlap between the ego trajectory and object predicted paths starts and ends. An overlap is represented by the entering and exiting intersections for both ego and the object.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_motion_velocity_run_out_module

0.47.0 (2025-08-11)

  • fix(run_out): add missing ament_auto_package in CMakeList (#11096)
  • style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • feat(run_out): add parameters to select which debug markers to publish (#11082)
  • feat(run_out): add planning factors (#10892)
  • chore(run_out): add Zulfaqar Azmi as maintainer (#10896)
  • feat(run_out): add option for strict cutting of predicted paths (#10887)
  • Contributors: Maxime CLEMENT, Mete Fatih Cırıt

0.46.0 (2025-06-20)

  • Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base

  • fix(run_out): fix numerical stability in run_out interpolation (#10808)

    • fix(run_out): fix numerical stability in run_out interpolation

    * fix build ---------

  • feat(run_out): option to preserve parts of ignored predicted paths (#10754)

  • chore(run_out): add Alqudah Mohammad as maintainer (#10762)

  • fix(run_out): guard against decreasing ego trajectory times (#10746)

  • feat(autoware_motion_velocity_planner): only wait for required subscriptions (#10732)

  • Contributors: Maxime CLEMENT, Ryohsuke Mitsudome, TaikiYamada4, Yuxuan Liu

0.45.0 (2025-05-22)

  • Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
  • fix(motion_velocity_planner): add missing header (#10560)
  • fix(motion_velocity_planner): remove unused functions (#10563)
  • fix(motion_velocity_planner): remove unused function (#10564)
  • fix(motion_velocity_planner/run_out): fix tf2 include (.hpp->.h) (#10548)
  • chore(motion_velocity_run_out): add diagnostic_updater for dependency resolve (#10535)
  • feat(motion_velocity_planner): add new run_out module (#10388)
  • Contributors: Mamoru Sobue, Masaki Baba, Maxime CLEMENT, Ryuta Kambe, TaikiYamada4

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_motion_velocity_run_out_module at Robotics Stack Exchange

Package symbol

autoware_motion_velocity_run_out_module package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

run out module for the motion_velocity_planner

Additional Links

No additional links.

Maintainers

  • Maxime Clement
  • Alqudah Mohammad
  • Zulfaqar Azmi

Authors

  • Maxime Clement

Run Out

Role

The run_out module adds deceleration and stop points to the ego trajectory in order to prevent collisions with objects that are moving towards the ego vehicle path.

Activation

This module is activated if the launch parameter launch_mvp_run_out_module is set to true.

Inner-workings / Algorithms

This module calculates the times when the ego vehicle and the objects are predicted to overlap each other’s trajectories. These times are then used to decide whether to stop before the overlap or not.

Next we explain the inner-workings of the module in more details.

1. Ego trajectory footprint

In this first step, the trajectory footprint is constructed from the corner points of the vehicle. 4 linestrings are constructed from the 4 corners (front left, front right, rear left, rear right) projected at each trajectory point.

At this step, the footprint size can be adjusted using the ego.lateral_margin and ego.longitudinal_margin parameters.

The following figures show the 4 corner linestrings calculated for the red trajectory.

front left front right rear left rear right
ego_front_left_footprint ego_front_right_footprint ego_rear_left_footprint ego_rear_right_footprint

These can be visualized on the debug markers with the ego_footprint_(front|rear)_(left|right) namespaces.

2. Extracting map filtering data

In the second step, we extract geometric information from the vector map that will be used to filter dynamic objects. For each object classification label, we prepare the following sets of geometries based on the parameters defined for that label (objects.{CLASSIFICATION_LABEL}):

  • polygons to ignore objects (ignore.polygon_types and ignore.lanelet_subtypes);
    • polygons for the ego trajectory footprint are also added if ignore.if_on_ego_trajectory is set to true.
  • polygons to ignore collisions (ignore_collisions.polygon_types and ignore_collisions.lanelet_subtypes);
  • segments to cut predicted paths (cut_predicted_paths.polygon_types, cut_predicted_paths.linestring_types, and cut_predicted_paths.lanelet_subtypes).
    • the rear segment of the current ego footprint is also added if cut_predicted_paths.if_crossing_ego_from_behind is set to true.
  • segments to strictly cut predicted paths (cut_predicted_paths.strict_polygon_types, cut_predicted_paths.strict_linestring_types, and cut_predicted_paths.strict_lanelet_subtypes).
    • strict cutting means that the cut is always applied, regardless of any preserved distance or duration.

The following figure shows an example where the polygons to ignore objects are shown in blue, to ignore collisions in green, and to cut predicted paths in red.

map_filtering_data

These geometries can be visualized on the debug markers with the filtering_data_(ignore_objects|ignore_collisions|cut_predicted_paths) namespaces. The classification label corresponding to the published debug markers can be selected with parameter debug.object_label.

3. Dynamic objects filtering

In this step, objects and their predicted paths are filtered based on its classification label and the corresponding parameters objects.{CLASSIFICATION_LABEL}.

An object is ignored if one of the following condition is true:

  • its classification label is not in the list defined by the objects.target_labels parameter;
  • its velocity is bellow the ignore.stopped_velocity_threshold and ignore.if_stopped is set to true;
  • its current footprint is inside one of the polygons prepared in the previous step.

However, if it was decided to stop for the object in the previous iteration, or if a collision was detected with the object, then it cannot be ignored.

If an object is not ignored, its predicted path footprints are generated similarly to the ego footprint First, we only keep predicted paths that have a confidence value above the confidence_filtering.threshold parameter. If, confidence_filtering.only_use_highest is set to true then for each object only the predicted paths that have the higher confidence value are kept. Next, the remaining predicted paths are cut according to the segments prepared in the previous step.

To guarantee that parts of the predicted paths are never ignored, parameters preserved_duration and preserved_distance can be used to set a minimum duration and/or distance that cannot be cut or ignored. This is not applied in the case of the strict cutting.

The following figures shows an example where crosswalks are used to ignore pedestrians and to cut their predicted paths.

debug markers (objects_footprints) objects of interest
objects_footprints objects_of_interest

The result of the filtering can be visualized on the debug markers with the objects_footprints namespace which shows in yellow which predicted path will be used for collision checking in the next step.

In addition, the objects of interests markers shows which objects are not ignored and the color will correspond to the decision made towards that object (green for nothing, yellow for slowdown, and red for stop).

4. Collision detection

Now that we prepared the ego trajectory footprint, the dynamic objects, and their predicted paths, we will calculate the times when they are predicted to collide.

The following operations are performed for each object that was not ignored in the previous iteration.

First, we calculate the intersections between each pair of linestrings between the ego and object footprints. For each intersection, we calculate the corresponding point, the time when ego and the object are predicted to reach that point, and the location of that point on the ego footprint (e.g., on the rear left linestring).

All these intersections are then combined into intervals representing when the overlap between the ego trajectory and object predicted paths starts and ends. An overlap is represented by the entering and exiting intersections for both ego and the object.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_motion_velocity_run_out_module

0.47.0 (2025-08-11)

  • fix(run_out): add missing ament_auto_package in CMakeList (#11096)
  • style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • feat(run_out): add parameters to select which debug markers to publish (#11082)
  • feat(run_out): add planning factors (#10892)
  • chore(run_out): add Zulfaqar Azmi as maintainer (#10896)
  • feat(run_out): add option for strict cutting of predicted paths (#10887)
  • Contributors: Maxime CLEMENT, Mete Fatih Cırıt

0.46.0 (2025-06-20)

  • Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base

  • fix(run_out): fix numerical stability in run_out interpolation (#10808)

    • fix(run_out): fix numerical stability in run_out interpolation

    * fix build ---------

  • feat(run_out): option to preserve parts of ignored predicted paths (#10754)

  • chore(run_out): add Alqudah Mohammad as maintainer (#10762)

  • fix(run_out): guard against decreasing ego trajectory times (#10746)

  • feat(autoware_motion_velocity_planner): only wait for required subscriptions (#10732)

  • Contributors: Maxime CLEMENT, Ryohsuke Mitsudome, TaikiYamada4, Yuxuan Liu

0.45.0 (2025-05-22)

  • Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
  • fix(motion_velocity_planner): add missing header (#10560)
  • fix(motion_velocity_planner): remove unused functions (#10563)
  • fix(motion_velocity_planner): remove unused function (#10564)
  • fix(motion_velocity_planner/run_out): fix tf2 include (.hpp->.h) (#10548)
  • chore(motion_velocity_run_out): add diagnostic_updater for dependency resolve (#10535)
  • feat(motion_velocity_planner): add new run_out module (#10388)
  • Contributors: Mamoru Sobue, Masaki Baba, Maxime CLEMENT, Ryuta Kambe, TaikiYamada4

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_motion_velocity_run_out_module at Robotics Stack Exchange

No version for distro galactic showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_motion_velocity_run_out_module package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

run out module for the motion_velocity_planner

Additional Links

No additional links.

Maintainers

  • Maxime Clement
  • Alqudah Mohammad
  • Zulfaqar Azmi

Authors

  • Maxime Clement

Run Out

Role

The run_out module adds deceleration and stop points to the ego trajectory in order to prevent collisions with objects that are moving towards the ego vehicle path.

Activation

This module is activated if the launch parameter launch_mvp_run_out_module is set to true.

Inner-workings / Algorithms

This module calculates the times when the ego vehicle and the objects are predicted to overlap each other’s trajectories. These times are then used to decide whether to stop before the overlap or not.

Next we explain the inner-workings of the module in more details.

1. Ego trajectory footprint

In this first step, the trajectory footprint is constructed from the corner points of the vehicle. 4 linestrings are constructed from the 4 corners (front left, front right, rear left, rear right) projected at each trajectory point.

At this step, the footprint size can be adjusted using the ego.lateral_margin and ego.longitudinal_margin parameters.

The following figures show the 4 corner linestrings calculated for the red trajectory.

front left front right rear left rear right
ego_front_left_footprint ego_front_right_footprint ego_rear_left_footprint ego_rear_right_footprint

These can be visualized on the debug markers with the ego_footprint_(front|rear)_(left|right) namespaces.

2. Extracting map filtering data

In the second step, we extract geometric information from the vector map that will be used to filter dynamic objects. For each object classification label, we prepare the following sets of geometries based on the parameters defined for that label (objects.{CLASSIFICATION_LABEL}):

  • polygons to ignore objects (ignore.polygon_types and ignore.lanelet_subtypes);
    • polygons for the ego trajectory footprint are also added if ignore.if_on_ego_trajectory is set to true.
  • polygons to ignore collisions (ignore_collisions.polygon_types and ignore_collisions.lanelet_subtypes);
  • segments to cut predicted paths (cut_predicted_paths.polygon_types, cut_predicted_paths.linestring_types, and cut_predicted_paths.lanelet_subtypes).
    • the rear segment of the current ego footprint is also added if cut_predicted_paths.if_crossing_ego_from_behind is set to true.
  • segments to strictly cut predicted paths (cut_predicted_paths.strict_polygon_types, cut_predicted_paths.strict_linestring_types, and cut_predicted_paths.strict_lanelet_subtypes).
    • strict cutting means that the cut is always applied, regardless of any preserved distance or duration.

The following figure shows an example where the polygons to ignore objects are shown in blue, to ignore collisions in green, and to cut predicted paths in red.

map_filtering_data

These geometries can be visualized on the debug markers with the filtering_data_(ignore_objects|ignore_collisions|cut_predicted_paths) namespaces. The classification label corresponding to the published debug markers can be selected with parameter debug.object_label.

3. Dynamic objects filtering

In this step, objects and their predicted paths are filtered based on its classification label and the corresponding parameters objects.{CLASSIFICATION_LABEL}.

An object is ignored if one of the following condition is true:

  • its classification label is not in the list defined by the objects.target_labels parameter;
  • its velocity is bellow the ignore.stopped_velocity_threshold and ignore.if_stopped is set to true;
  • its current footprint is inside one of the polygons prepared in the previous step.

However, if it was decided to stop for the object in the previous iteration, or if a collision was detected with the object, then it cannot be ignored.

If an object is not ignored, its predicted path footprints are generated similarly to the ego footprint First, we only keep predicted paths that have a confidence value above the confidence_filtering.threshold parameter. If, confidence_filtering.only_use_highest is set to true then for each object only the predicted paths that have the higher confidence value are kept. Next, the remaining predicted paths are cut according to the segments prepared in the previous step.

To guarantee that parts of the predicted paths are never ignored, parameters preserved_duration and preserved_distance can be used to set a minimum duration and/or distance that cannot be cut or ignored. This is not applied in the case of the strict cutting.

The following figures shows an example where crosswalks are used to ignore pedestrians and to cut their predicted paths.

debug markers (objects_footprints) objects of interest
objects_footprints objects_of_interest

The result of the filtering can be visualized on the debug markers with the objects_footprints namespace which shows in yellow which predicted path will be used for collision checking in the next step.

In addition, the objects of interests markers shows which objects are not ignored and the color will correspond to the decision made towards that object (green for nothing, yellow for slowdown, and red for stop).

4. Collision detection

Now that we prepared the ego trajectory footprint, the dynamic objects, and their predicted paths, we will calculate the times when they are predicted to collide.

The following operations are performed for each object that was not ignored in the previous iteration.

First, we calculate the intersections between each pair of linestrings between the ego and object footprints. For each intersection, we calculate the corresponding point, the time when ego and the object are predicted to reach that point, and the location of that point on the ego footprint (e.g., on the rear left linestring).

All these intersections are then combined into intervals representing when the overlap between the ego trajectory and object predicted paths starts and ends. An overlap is represented by the entering and exiting intersections for both ego and the object.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_motion_velocity_run_out_module

0.47.0 (2025-08-11)

  • fix(run_out): add missing ament_auto_package in CMakeList (#11096)
  • style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • feat(run_out): add parameters to select which debug markers to publish (#11082)
  • feat(run_out): add planning factors (#10892)
  • chore(run_out): add Zulfaqar Azmi as maintainer (#10896)
  • feat(run_out): add option for strict cutting of predicted paths (#10887)
  • Contributors: Maxime CLEMENT, Mete Fatih Cırıt

0.46.0 (2025-06-20)

  • Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base

  • fix(run_out): fix numerical stability in run_out interpolation (#10808)

    • fix(run_out): fix numerical stability in run_out interpolation

    * fix build ---------

  • feat(run_out): option to preserve parts of ignored predicted paths (#10754)

  • chore(run_out): add Alqudah Mohammad as maintainer (#10762)

  • fix(run_out): guard against decreasing ego trajectory times (#10746)

  • feat(autoware_motion_velocity_planner): only wait for required subscriptions (#10732)

  • Contributors: Maxime CLEMENT, Ryohsuke Mitsudome, TaikiYamada4, Yuxuan Liu

0.45.0 (2025-05-22)

  • Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
  • fix(motion_velocity_planner): add missing header (#10560)
  • fix(motion_velocity_planner): remove unused functions (#10563)
  • fix(motion_velocity_planner): remove unused function (#10564)
  • fix(motion_velocity_planner/run_out): fix tf2 include (.hpp->.h) (#10548)
  • chore(motion_velocity_run_out): add diagnostic_updater for dependency resolve (#10535)
  • feat(motion_velocity_planner): add new run_out module (#10388)
  • Contributors: Mamoru Sobue, Masaki Baba, Maxime CLEMENT, Ryuta Kambe, TaikiYamada4

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_motion_velocity_run_out_module at Robotics Stack Exchange

No version for distro iron showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_motion_velocity_run_out_module package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

run out module for the motion_velocity_planner

Additional Links

No additional links.

Maintainers

  • Maxime Clement
  • Alqudah Mohammad
  • Zulfaqar Azmi

Authors

  • Maxime Clement

Run Out

Role

The run_out module adds deceleration and stop points to the ego trajectory in order to prevent collisions with objects that are moving towards the ego vehicle path.

Activation

This module is activated if the launch parameter launch_mvp_run_out_module is set to true.

Inner-workings / Algorithms

This module calculates the times when the ego vehicle and the objects are predicted to overlap each other’s trajectories. These times are then used to decide whether to stop before the overlap or not.

Next we explain the inner-workings of the module in more details.

1. Ego trajectory footprint

In this first step, the trajectory footprint is constructed from the corner points of the vehicle. 4 linestrings are constructed from the 4 corners (front left, front right, rear left, rear right) projected at each trajectory point.

At this step, the footprint size can be adjusted using the ego.lateral_margin and ego.longitudinal_margin parameters.

The following figures show the 4 corner linestrings calculated for the red trajectory.

front left front right rear left rear right
ego_front_left_footprint ego_front_right_footprint ego_rear_left_footprint ego_rear_right_footprint

These can be visualized on the debug markers with the ego_footprint_(front|rear)_(left|right) namespaces.

2. Extracting map filtering data

In the second step, we extract geometric information from the vector map that will be used to filter dynamic objects. For each object classification label, we prepare the following sets of geometries based on the parameters defined for that label (objects.{CLASSIFICATION_LABEL}):

  • polygons to ignore objects (ignore.polygon_types and ignore.lanelet_subtypes);
    • polygons for the ego trajectory footprint are also added if ignore.if_on_ego_trajectory is set to true.
  • polygons to ignore collisions (ignore_collisions.polygon_types and ignore_collisions.lanelet_subtypes);
  • segments to cut predicted paths (cut_predicted_paths.polygon_types, cut_predicted_paths.linestring_types, and cut_predicted_paths.lanelet_subtypes).
    • the rear segment of the current ego footprint is also added if cut_predicted_paths.if_crossing_ego_from_behind is set to true.
  • segments to strictly cut predicted paths (cut_predicted_paths.strict_polygon_types, cut_predicted_paths.strict_linestring_types, and cut_predicted_paths.strict_lanelet_subtypes).
    • strict cutting means that the cut is always applied, regardless of any preserved distance or duration.

The following figure shows an example where the polygons to ignore objects are shown in blue, to ignore collisions in green, and to cut predicted paths in red.

map_filtering_data

These geometries can be visualized on the debug markers with the filtering_data_(ignore_objects|ignore_collisions|cut_predicted_paths) namespaces. The classification label corresponding to the published debug markers can be selected with parameter debug.object_label.

3. Dynamic objects filtering

In this step, objects and their predicted paths are filtered based on its classification label and the corresponding parameters objects.{CLASSIFICATION_LABEL}.

An object is ignored if one of the following condition is true:

  • its classification label is not in the list defined by the objects.target_labels parameter;
  • its velocity is bellow the ignore.stopped_velocity_threshold and ignore.if_stopped is set to true;
  • its current footprint is inside one of the polygons prepared in the previous step.

However, if it was decided to stop for the object in the previous iteration, or if a collision was detected with the object, then it cannot be ignored.

If an object is not ignored, its predicted path footprints are generated similarly to the ego footprint First, we only keep predicted paths that have a confidence value above the confidence_filtering.threshold parameter. If, confidence_filtering.only_use_highest is set to true then for each object only the predicted paths that have the higher confidence value are kept. Next, the remaining predicted paths are cut according to the segments prepared in the previous step.

To guarantee that parts of the predicted paths are never ignored, parameters preserved_duration and preserved_distance can be used to set a minimum duration and/or distance that cannot be cut or ignored. This is not applied in the case of the strict cutting.

The following figures shows an example where crosswalks are used to ignore pedestrians and to cut their predicted paths.

debug markers (objects_footprints) objects of interest
objects_footprints objects_of_interest

The result of the filtering can be visualized on the debug markers with the objects_footprints namespace which shows in yellow which predicted path will be used for collision checking in the next step.

In addition, the objects of interests markers shows which objects are not ignored and the color will correspond to the decision made towards that object (green for nothing, yellow for slowdown, and red for stop).

4. Collision detection

Now that we prepared the ego trajectory footprint, the dynamic objects, and their predicted paths, we will calculate the times when they are predicted to collide.

The following operations are performed for each object that was not ignored in the previous iteration.

First, we calculate the intersections between each pair of linestrings between the ego and object footprints. For each intersection, we calculate the corresponding point, the time when ego and the object are predicted to reach that point, and the location of that point on the ego footprint (e.g., on the rear left linestring).

All these intersections are then combined into intervals representing when the overlap between the ego trajectory and object predicted paths starts and ends. An overlap is represented by the entering and exiting intersections for both ego and the object.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_motion_velocity_run_out_module

0.47.0 (2025-08-11)

  • fix(run_out): add missing ament_auto_package in CMakeList (#11096)
  • style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • feat(run_out): add parameters to select which debug markers to publish (#11082)
  • feat(run_out): add planning factors (#10892)
  • chore(run_out): add Zulfaqar Azmi as maintainer (#10896)
  • feat(run_out): add option for strict cutting of predicted paths (#10887)
  • Contributors: Maxime CLEMENT, Mete Fatih Cırıt

0.46.0 (2025-06-20)

  • Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base

  • fix(run_out): fix numerical stability in run_out interpolation (#10808)

    • fix(run_out): fix numerical stability in run_out interpolation

    * fix build ---------

  • feat(run_out): option to preserve parts of ignored predicted paths (#10754)

  • chore(run_out): add Alqudah Mohammad as maintainer (#10762)

  • fix(run_out): guard against decreasing ego trajectory times (#10746)

  • feat(autoware_motion_velocity_planner): only wait for required subscriptions (#10732)

  • Contributors: Maxime CLEMENT, Ryohsuke Mitsudome, TaikiYamada4, Yuxuan Liu

0.45.0 (2025-05-22)

  • Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
  • fix(motion_velocity_planner): add missing header (#10560)
  • fix(motion_velocity_planner): remove unused functions (#10563)
  • fix(motion_velocity_planner): remove unused function (#10564)
  • fix(motion_velocity_planner/run_out): fix tf2 include (.hpp->.h) (#10548)
  • chore(motion_velocity_run_out): add diagnostic_updater for dependency resolve (#10535)
  • feat(motion_velocity_planner): add new run_out module (#10388)
  • Contributors: Mamoru Sobue, Masaki Baba, Maxime CLEMENT, Ryuta Kambe, TaikiYamada4

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_motion_velocity_run_out_module at Robotics Stack Exchange

No version for distro melodic showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_motion_velocity_run_out_module package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

run out module for the motion_velocity_planner

Additional Links

No additional links.

Maintainers

  • Maxime Clement
  • Alqudah Mohammad
  • Zulfaqar Azmi

Authors

  • Maxime Clement

Run Out

Role

The run_out module adds deceleration and stop points to the ego trajectory in order to prevent collisions with objects that are moving towards the ego vehicle path.

Activation

This module is activated if the launch parameter launch_mvp_run_out_module is set to true.

Inner-workings / Algorithms

This module calculates the times when the ego vehicle and the objects are predicted to overlap each other’s trajectories. These times are then used to decide whether to stop before the overlap or not.

Next we explain the inner-workings of the module in more details.

1. Ego trajectory footprint

In this first step, the trajectory footprint is constructed from the corner points of the vehicle. 4 linestrings are constructed from the 4 corners (front left, front right, rear left, rear right) projected at each trajectory point.

At this step, the footprint size can be adjusted using the ego.lateral_margin and ego.longitudinal_margin parameters.

The following figures show the 4 corner linestrings calculated for the red trajectory.

front left front right rear left rear right
ego_front_left_footprint ego_front_right_footprint ego_rear_left_footprint ego_rear_right_footprint

These can be visualized on the debug markers with the ego_footprint_(front|rear)_(left|right) namespaces.

2. Extracting map filtering data

In the second step, we extract geometric information from the vector map that will be used to filter dynamic objects. For each object classification label, we prepare the following sets of geometries based on the parameters defined for that label (objects.{CLASSIFICATION_LABEL}):

  • polygons to ignore objects (ignore.polygon_types and ignore.lanelet_subtypes);
    • polygons for the ego trajectory footprint are also added if ignore.if_on_ego_trajectory is set to true.
  • polygons to ignore collisions (ignore_collisions.polygon_types and ignore_collisions.lanelet_subtypes);
  • segments to cut predicted paths (cut_predicted_paths.polygon_types, cut_predicted_paths.linestring_types, and cut_predicted_paths.lanelet_subtypes).
    • the rear segment of the current ego footprint is also added if cut_predicted_paths.if_crossing_ego_from_behind is set to true.
  • segments to strictly cut predicted paths (cut_predicted_paths.strict_polygon_types, cut_predicted_paths.strict_linestring_types, and cut_predicted_paths.strict_lanelet_subtypes).
    • strict cutting means that the cut is always applied, regardless of any preserved distance or duration.

The following figure shows an example where the polygons to ignore objects are shown in blue, to ignore collisions in green, and to cut predicted paths in red.

map_filtering_data

These geometries can be visualized on the debug markers with the filtering_data_(ignore_objects|ignore_collisions|cut_predicted_paths) namespaces. The classification label corresponding to the published debug markers can be selected with parameter debug.object_label.

3. Dynamic objects filtering

In this step, objects and their predicted paths are filtered based on its classification label and the corresponding parameters objects.{CLASSIFICATION_LABEL}.

An object is ignored if one of the following condition is true:

  • its classification label is not in the list defined by the objects.target_labels parameter;
  • its velocity is bellow the ignore.stopped_velocity_threshold and ignore.if_stopped is set to true;
  • its current footprint is inside one of the polygons prepared in the previous step.

However, if it was decided to stop for the object in the previous iteration, or if a collision was detected with the object, then it cannot be ignored.

If an object is not ignored, its predicted path footprints are generated similarly to the ego footprint First, we only keep predicted paths that have a confidence value above the confidence_filtering.threshold parameter. If, confidence_filtering.only_use_highest is set to true then for each object only the predicted paths that have the higher confidence value are kept. Next, the remaining predicted paths are cut according to the segments prepared in the previous step.

To guarantee that parts of the predicted paths are never ignored, parameters preserved_duration and preserved_distance can be used to set a minimum duration and/or distance that cannot be cut or ignored. This is not applied in the case of the strict cutting.

The following figures shows an example where crosswalks are used to ignore pedestrians and to cut their predicted paths.

debug markers (objects_footprints) objects of interest
objects_footprints objects_of_interest

The result of the filtering can be visualized on the debug markers with the objects_footprints namespace which shows in yellow which predicted path will be used for collision checking in the next step.

In addition, the objects of interests markers shows which objects are not ignored and the color will correspond to the decision made towards that object (green for nothing, yellow for slowdown, and red for stop).

4. Collision detection

Now that we prepared the ego trajectory footprint, the dynamic objects, and their predicted paths, we will calculate the times when they are predicted to collide.

The following operations are performed for each object that was not ignored in the previous iteration.

First, we calculate the intersections between each pair of linestrings between the ego and object footprints. For each intersection, we calculate the corresponding point, the time when ego and the object are predicted to reach that point, and the location of that point on the ego footprint (e.g., on the rear left linestring).

All these intersections are then combined into intervals representing when the overlap between the ego trajectory and object predicted paths starts and ends. An overlap is represented by the entering and exiting intersections for both ego and the object.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_motion_velocity_run_out_module

0.47.0 (2025-08-11)

  • fix(run_out): add missing ament_auto_package in CMakeList (#11096)
  • style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • feat(run_out): add parameters to select which debug markers to publish (#11082)
  • feat(run_out): add planning factors (#10892)
  • chore(run_out): add Zulfaqar Azmi as maintainer (#10896)
  • feat(run_out): add option for strict cutting of predicted paths (#10887)
  • Contributors: Maxime CLEMENT, Mete Fatih Cırıt

0.46.0 (2025-06-20)

  • Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base

  • fix(run_out): fix numerical stability in run_out interpolation (#10808)

    • fix(run_out): fix numerical stability in run_out interpolation

    * fix build ---------

  • feat(run_out): option to preserve parts of ignored predicted paths (#10754)

  • chore(run_out): add Alqudah Mohammad as maintainer (#10762)

  • fix(run_out): guard against decreasing ego trajectory times (#10746)

  • feat(autoware_motion_velocity_planner): only wait for required subscriptions (#10732)

  • Contributors: Maxime CLEMENT, Ryohsuke Mitsudome, TaikiYamada4, Yuxuan Liu

0.45.0 (2025-05-22)

  • Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
  • fix(motion_velocity_planner): add missing header (#10560)
  • fix(motion_velocity_planner): remove unused functions (#10563)
  • fix(motion_velocity_planner): remove unused function (#10564)
  • fix(motion_velocity_planner/run_out): fix tf2 include (.hpp->.h) (#10548)
  • chore(motion_velocity_run_out): add diagnostic_updater for dependency resolve (#10535)
  • feat(motion_velocity_planner): add new run_out module (#10388)
  • Contributors: Mamoru Sobue, Masaki Baba, Maxime CLEMENT, Ryuta Kambe, TaikiYamada4

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_motion_velocity_run_out_module at Robotics Stack Exchange

No version for distro noetic showing github. Known supported distros are highlighted in the buttons above.
Package symbol

autoware_motion_velocity_run_out_module package from autoware_universe repo

autoware_agnocast_wrapper autoware_auto_common autoware_boundary_departure_checker autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_command_gate autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_stop_mode_operator autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter autoware_diagnostic_graph_test_examples tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_map_tf_generator autoware_bevfusion autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_sorter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_fusion_to_detected_object autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simpl_prediction autoware_simple_object_merger autoware_tensorrt_bevdet autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_plugins autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_diffusion_planner autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_hazard_lights_selector autoware_mission_planner_universe autoware_path_optimizer autoware_path_smoother autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_bidirectional_traffic_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_boundary_departure_prevention_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_motion_velocity_road_user_stop_module autoware_motion_velocity_run_out_module autoware_planning_validator autoware_planning_validator_intersection_collision_checker autoware_planning_validator_latency_checker autoware_planning_validator_rear_collision_checker autoware_planning_validator_test_utils autoware_planning_validator_trajectory_checker autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_objects_adapter autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_command_mode_decider autoware_command_mode_decider_plugins autoware_command_mode_switcher autoware_command_mode_switcher_plugins autoware_command_mode_types autoware_component_monitor autoware_component_state_monitor autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_default_adapi_universe autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_pipeline_latency_monitor autoware_processing_time_checker autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_traffic_light_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_mode_rviz_plugin tier4_datetime_rviz_plugin tier4_perception_rviz_plugin tier4_planning_factor_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

ROS Distro
github

Package Summary

Tags No category tags.
Version 0.47.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Description
Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-08-16
Dev Status UNKNOWN
Released UNRELEASED
Tags planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware
Contributing Help Wanted (-)
Good First Issues (-)
Pull Requests to Review (-)

Package Description

run out module for the motion_velocity_planner

Additional Links

No additional links.

Maintainers

  • Maxime Clement
  • Alqudah Mohammad
  • Zulfaqar Azmi

Authors

  • Maxime Clement

Run Out

Role

The run_out module adds deceleration and stop points to the ego trajectory in order to prevent collisions with objects that are moving towards the ego vehicle path.

Activation

This module is activated if the launch parameter launch_mvp_run_out_module is set to true.

Inner-workings / Algorithms

This module calculates the times when the ego vehicle and the objects are predicted to overlap each other’s trajectories. These times are then used to decide whether to stop before the overlap or not.

Next we explain the inner-workings of the module in more details.

1. Ego trajectory footprint

In this first step, the trajectory footprint is constructed from the corner points of the vehicle. 4 linestrings are constructed from the 4 corners (front left, front right, rear left, rear right) projected at each trajectory point.

At this step, the footprint size can be adjusted using the ego.lateral_margin and ego.longitudinal_margin parameters.

The following figures show the 4 corner linestrings calculated for the red trajectory.

front left front right rear left rear right
ego_front_left_footprint ego_front_right_footprint ego_rear_left_footprint ego_rear_right_footprint

These can be visualized on the debug markers with the ego_footprint_(front|rear)_(left|right) namespaces.

2. Extracting map filtering data

In the second step, we extract geometric information from the vector map that will be used to filter dynamic objects. For each object classification label, we prepare the following sets of geometries based on the parameters defined for that label (objects.{CLASSIFICATION_LABEL}):

  • polygons to ignore objects (ignore.polygon_types and ignore.lanelet_subtypes);
    • polygons for the ego trajectory footprint are also added if ignore.if_on_ego_trajectory is set to true.
  • polygons to ignore collisions (ignore_collisions.polygon_types and ignore_collisions.lanelet_subtypes);
  • segments to cut predicted paths (cut_predicted_paths.polygon_types, cut_predicted_paths.linestring_types, and cut_predicted_paths.lanelet_subtypes).
    • the rear segment of the current ego footprint is also added if cut_predicted_paths.if_crossing_ego_from_behind is set to true.
  • segments to strictly cut predicted paths (cut_predicted_paths.strict_polygon_types, cut_predicted_paths.strict_linestring_types, and cut_predicted_paths.strict_lanelet_subtypes).
    • strict cutting means that the cut is always applied, regardless of any preserved distance or duration.

The following figure shows an example where the polygons to ignore objects are shown in blue, to ignore collisions in green, and to cut predicted paths in red.

map_filtering_data

These geometries can be visualized on the debug markers with the filtering_data_(ignore_objects|ignore_collisions|cut_predicted_paths) namespaces. The classification label corresponding to the published debug markers can be selected with parameter debug.object_label.

3. Dynamic objects filtering

In this step, objects and their predicted paths are filtered based on its classification label and the corresponding parameters objects.{CLASSIFICATION_LABEL}.

An object is ignored if one of the following condition is true:

  • its classification label is not in the list defined by the objects.target_labels parameter;
  • its velocity is bellow the ignore.stopped_velocity_threshold and ignore.if_stopped is set to true;
  • its current footprint is inside one of the polygons prepared in the previous step.

However, if it was decided to stop for the object in the previous iteration, or if a collision was detected with the object, then it cannot be ignored.

If an object is not ignored, its predicted path footprints are generated similarly to the ego footprint First, we only keep predicted paths that have a confidence value above the confidence_filtering.threshold parameter. If, confidence_filtering.only_use_highest is set to true then for each object only the predicted paths that have the higher confidence value are kept. Next, the remaining predicted paths are cut according to the segments prepared in the previous step.

To guarantee that parts of the predicted paths are never ignored, parameters preserved_duration and preserved_distance can be used to set a minimum duration and/or distance that cannot be cut or ignored. This is not applied in the case of the strict cutting.

The following figures shows an example where crosswalks are used to ignore pedestrians and to cut their predicted paths.

debug markers (objects_footprints) objects of interest
objects_footprints objects_of_interest

The result of the filtering can be visualized on the debug markers with the objects_footprints namespace which shows in yellow which predicted path will be used for collision checking in the next step.

In addition, the objects of interests markers shows which objects are not ignored and the color will correspond to the decision made towards that object (green for nothing, yellow for slowdown, and red for stop).

4. Collision detection

Now that we prepared the ego trajectory footprint, the dynamic objects, and their predicted paths, we will calculate the times when they are predicted to collide.

The following operations are performed for each object that was not ignored in the previous iteration.

First, we calculate the intersections between each pair of linestrings between the ego and object footprints. For each intersection, we calculate the corresponding point, the time when ego and the object are predicted to reach that point, and the location of that point on the ego footprint (e.g., on the rear left linestring).

All these intersections are then combined into intervals representing when the overlap between the ego trajectory and object predicted paths starts and ends. An overlap is represented by the entering and exiting intersections for both ego and the object.

File truncated at 100 lines see the full file

CHANGELOG

Changelog for package autoware_motion_velocity_run_out_module

0.47.0 (2025-08-11)

  • fix(run_out): add missing ament_auto_package in CMakeList (#11096)
  • style(pre-commit): update to clang-format-20 (#11088) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • feat(run_out): add parameters to select which debug markers to publish (#11082)
  • feat(run_out): add planning factors (#10892)
  • chore(run_out): add Zulfaqar Azmi as maintainer (#10896)
  • feat(run_out): add option for strict cutting of predicted paths (#10887)
  • Contributors: Maxime CLEMENT, Mete Fatih Cırıt

0.46.0 (2025-06-20)

  • Merge remote-tracking branch 'upstream/main' into tmp/TaikiYamada/bump_version_base

  • fix(run_out): fix numerical stability in run_out interpolation (#10808)

    • fix(run_out): fix numerical stability in run_out interpolation

    * fix build ---------

  • feat(run_out): option to preserve parts of ignored predicted paths (#10754)

  • chore(run_out): add Alqudah Mohammad as maintainer (#10762)

  • fix(run_out): guard against decreasing ego trajectory times (#10746)

  • feat(autoware_motion_velocity_planner): only wait for required subscriptions (#10732)

  • Contributors: Maxime CLEMENT, Ryohsuke Mitsudome, TaikiYamada4, Yuxuan Liu

0.45.0 (2025-05-22)

  • Merge remote-tracking branch 'origin/main' into tmp/notbot/bump_version_base
  • fix(motion_velocity_planner): add missing header (#10560)
  • fix(motion_velocity_planner): remove unused functions (#10563)
  • fix(motion_velocity_planner): remove unused function (#10564)
  • fix(motion_velocity_planner/run_out): fix tf2 include (.hpp->.h) (#10548)
  • chore(motion_velocity_run_out): add diagnostic_updater for dependency resolve (#10535)
  • feat(motion_velocity_planner): add new run_out module (#10388)
  • Contributors: Mamoru Sobue, Masaki Baba, Maxime CLEMENT, Ryuta Kambe, TaikiYamada4

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_motion_velocity_run_out_module at Robotics Stack Exchange