Package Summary
Tags | No category tags. |
Version | 0.1.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-09-26 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Daniel Sanchez
- Yukihiro Saito
- Go Sakayori
- Shintaro Sakoda
Authors
- Go Sakayori
autoware_trajectory_ranker
Purpose
The autoware_trajectory_ranker
package provides a flexible and extensible framework for evaluating and ranking multiple trajectory candidates in autonomous driving scenarios. It transforms a set of viable candidate paths into an ordered list by attaching a scalar score to every trajectory based on safety, comfort, and efficiency criteria.
This decoupling of upstream path-generation logic from downstream motion-control logic enables:
- Diverse trajectory generators (rule-based, ML-based, optimization-based) to coexist
- Controllers to simply follow the highest-ranked path
- Improved overall driving performance through multi-criteria optimization
- Architectural flexibility through a plugin-based metric system
Features
- Plugin-based Architecture: Dynamically load and configure evaluation metrics via pluginlib
- Multi-criteria Evaluation: Score trajectories based on multiple metrics simultaneously
- Time-based Weighting: Apply temporal decay to metrics for better near-term decision making
- Extensible Framework: Easy to add new metrics through the plugin system
- Real-time Processing: Efficient evaluation of multiple trajectories per planning cycle
Algorithm Overview
At every planning period the node latches the most recent odometry and perception context, then processes trajectories through five distinct stages:
- Ingestion: Receives candidate trajectories from upstream generators
- Resampling: Converts each path into a common frame and resamples to fixed resolution
- Evaluation: Applies configured metric plugins to compute cost vectors
- Aggregation: Combines metrics using weights and temporal decay
- Publication: Outputs scored trajectories and debug information
Trajectory Resampling
Every incoming trajectory is re-interpolated relative to the ego pose so that:
- First point aligns with current vehicle position
- Path comprises exactly
sample_num
points - Points are spaced at fixed temporal intervals
- All metrics operate on consistent trajectory representations
This ensures that metric plugins can assume identical temporal spacing even when generators produce paths of different lengths or densities.
Metric Evaluation
For each resampled path, the evaluator executes a plugin chain specified in the configuration. Each metric plugin:
- Computes a vector of values (one per trajectory point)
- Returns costs reflecting safety, comfort, or efficiency considerations
- Can be classified as either maximization or deviation metrics
Score Aggregation
The aggregation stage:
- Applies per-metric weights from configuration
- Multiplies by temporal decay weights (exponential decay for near-term bias)
- Normalizes across trajectory candidates
- Sums to produce a single scalar score per trajectory
Available Metrics
The package includes the following built-in metric plugins:
Metric | Type | Description | Class Name |
---|---|---|---|
TravelDistance | Maximization | Measures progress along trajectory | autoware::trajectory_ranker::metrics::TravelDistance |
LateralAcceleration | Deviation | Evaluates lateral acceleration for comfort | autoware::trajectory_ranker::metrics::LateralAcceleration |
LongitudinalJerk | Deviation | Measures longitudinal jerk for smoothness | autoware::trajectory_ranker::metrics::LongitudinalJerk |
TimeToCollision | Maximization | Calculates time to collision with objects | autoware::trajectory_ranker::metrics::TimeToCollision |
LateralDeviation | Deviation | Measures deviation from preferred lanes | autoware::trajectory_ranker::metrics::LateralDeviation |
SteeringConsistency | Deviation | Evaluates steering command consistency | autoware::trajectory_ranker::metrics::SteeringConsistency |
Metric Types
- Maximization: Higher values are better (e.g., distance traveled, time to collision)
- Deviation: Lower values are better (e.g., lateral acceleration, jerk)
Input / Output
Input Topics
Topic | Type | Description |
---|---|---|
~/input/trajectories |
autoware_internal_planning_msgs/msg/CandidateTrajectories |
Candidate trajectories to evaluate |
~/input/objects |
autoware_perception_msgs/msg/PredictedObjects |
Predicted objects for collision checking |
~/input/odometry |
nav_msgs/msg/Odometry |
Current vehicle state |
~/input/map |
autoware_map_msgs/msg/LaneletMapBin |
Lanelet2 HD map |
~/input/route |
autoware_planning_msgs/msg/LaneletRoute |
Current route |
Output Topics
Topic | Type | Description |
---|---|---|
~/output/trajectories |
autoware_internal_planning_msgs/msg/ScoredCandidateTrajectories |
Scored candidate trajectories |
~/debug/processing_time_detail |
autoware_utils_debug/msg/ProcessingTimeDetail |
Processing time statistics |
Parameters
Core Parameters
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Launch files
- launch/trajectory_ranker.launch.xml
-
- trajectory_ranker_param_path [default: $(find-pkg-share autoware_trajectory_ranker)/config/evaluation.param.yaml]
- input_trajectories [default: ~/input/trajectories]
- output_trajectories [default: ~/output/trajectories]
- input_route [default: ~/input/route]
- input_vector_map [default: ~/input/vector_map]
- input_odometry [default: ~/input/odometry]
- input_objects [default: ~/input/objects]
Messages
Services
Plugins
Recent questions tagged autoware_trajectory_ranker at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.1.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-09-26 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Daniel Sanchez
- Yukihiro Saito
- Go Sakayori
- Shintaro Sakoda
Authors
- Go Sakayori
autoware_trajectory_ranker
Purpose
The autoware_trajectory_ranker
package provides a flexible and extensible framework for evaluating and ranking multiple trajectory candidates in autonomous driving scenarios. It transforms a set of viable candidate paths into an ordered list by attaching a scalar score to every trajectory based on safety, comfort, and efficiency criteria.
This decoupling of upstream path-generation logic from downstream motion-control logic enables:
- Diverse trajectory generators (rule-based, ML-based, optimization-based) to coexist
- Controllers to simply follow the highest-ranked path
- Improved overall driving performance through multi-criteria optimization
- Architectural flexibility through a plugin-based metric system
Features
- Plugin-based Architecture: Dynamically load and configure evaluation metrics via pluginlib
- Multi-criteria Evaluation: Score trajectories based on multiple metrics simultaneously
- Time-based Weighting: Apply temporal decay to metrics for better near-term decision making
- Extensible Framework: Easy to add new metrics through the plugin system
- Real-time Processing: Efficient evaluation of multiple trajectories per planning cycle
Algorithm Overview
At every planning period the node latches the most recent odometry and perception context, then processes trajectories through five distinct stages:
- Ingestion: Receives candidate trajectories from upstream generators
- Resampling: Converts each path into a common frame and resamples to fixed resolution
- Evaluation: Applies configured metric plugins to compute cost vectors
- Aggregation: Combines metrics using weights and temporal decay
- Publication: Outputs scored trajectories and debug information
Trajectory Resampling
Every incoming trajectory is re-interpolated relative to the ego pose so that:
- First point aligns with current vehicle position
- Path comprises exactly
sample_num
points - Points are spaced at fixed temporal intervals
- All metrics operate on consistent trajectory representations
This ensures that metric plugins can assume identical temporal spacing even when generators produce paths of different lengths or densities.
Metric Evaluation
For each resampled path, the evaluator executes a plugin chain specified in the configuration. Each metric plugin:
- Computes a vector of values (one per trajectory point)
- Returns costs reflecting safety, comfort, or efficiency considerations
- Can be classified as either maximization or deviation metrics
Score Aggregation
The aggregation stage:
- Applies per-metric weights from configuration
- Multiplies by temporal decay weights (exponential decay for near-term bias)
- Normalizes across trajectory candidates
- Sums to produce a single scalar score per trajectory
Available Metrics
The package includes the following built-in metric plugins:
Metric | Type | Description | Class Name |
---|---|---|---|
TravelDistance | Maximization | Measures progress along trajectory | autoware::trajectory_ranker::metrics::TravelDistance |
LateralAcceleration | Deviation | Evaluates lateral acceleration for comfort | autoware::trajectory_ranker::metrics::LateralAcceleration |
LongitudinalJerk | Deviation | Measures longitudinal jerk for smoothness | autoware::trajectory_ranker::metrics::LongitudinalJerk |
TimeToCollision | Maximization | Calculates time to collision with objects | autoware::trajectory_ranker::metrics::TimeToCollision |
LateralDeviation | Deviation | Measures deviation from preferred lanes | autoware::trajectory_ranker::metrics::LateralDeviation |
SteeringConsistency | Deviation | Evaluates steering command consistency | autoware::trajectory_ranker::metrics::SteeringConsistency |
Metric Types
- Maximization: Higher values are better (e.g., distance traveled, time to collision)
- Deviation: Lower values are better (e.g., lateral acceleration, jerk)
Input / Output
Input Topics
Topic | Type | Description |
---|---|---|
~/input/trajectories |
autoware_internal_planning_msgs/msg/CandidateTrajectories |
Candidate trajectories to evaluate |
~/input/objects |
autoware_perception_msgs/msg/PredictedObjects |
Predicted objects for collision checking |
~/input/odometry |
nav_msgs/msg/Odometry |
Current vehicle state |
~/input/map |
autoware_map_msgs/msg/LaneletMapBin |
Lanelet2 HD map |
~/input/route |
autoware_planning_msgs/msg/LaneletRoute |
Current route |
Output Topics
Topic | Type | Description |
---|---|---|
~/output/trajectories |
autoware_internal_planning_msgs/msg/ScoredCandidateTrajectories |
Scored candidate trajectories |
~/debug/processing_time_detail |
autoware_utils_debug/msg/ProcessingTimeDetail |
Processing time statistics |
Parameters
Core Parameters
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Launch files
- launch/trajectory_ranker.launch.xml
-
- trajectory_ranker_param_path [default: $(find-pkg-share autoware_trajectory_ranker)/config/evaluation.param.yaml]
- input_trajectories [default: ~/input/trajectories]
- output_trajectories [default: ~/output/trajectories]
- input_route [default: ~/input/route]
- input_vector_map [default: ~/input/vector_map]
- input_odometry [default: ~/input/odometry]
- input_objects [default: ~/input/objects]
Messages
Services
Plugins
Recent questions tagged autoware_trajectory_ranker at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.1.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-09-26 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Daniel Sanchez
- Yukihiro Saito
- Go Sakayori
- Shintaro Sakoda
Authors
- Go Sakayori
autoware_trajectory_ranker
Purpose
The autoware_trajectory_ranker
package provides a flexible and extensible framework for evaluating and ranking multiple trajectory candidates in autonomous driving scenarios. It transforms a set of viable candidate paths into an ordered list by attaching a scalar score to every trajectory based on safety, comfort, and efficiency criteria.
This decoupling of upstream path-generation logic from downstream motion-control logic enables:
- Diverse trajectory generators (rule-based, ML-based, optimization-based) to coexist
- Controllers to simply follow the highest-ranked path
- Improved overall driving performance through multi-criteria optimization
- Architectural flexibility through a plugin-based metric system
Features
- Plugin-based Architecture: Dynamically load and configure evaluation metrics via pluginlib
- Multi-criteria Evaluation: Score trajectories based on multiple metrics simultaneously
- Time-based Weighting: Apply temporal decay to metrics for better near-term decision making
- Extensible Framework: Easy to add new metrics through the plugin system
- Real-time Processing: Efficient evaluation of multiple trajectories per planning cycle
Algorithm Overview
At every planning period the node latches the most recent odometry and perception context, then processes trajectories through five distinct stages:
- Ingestion: Receives candidate trajectories from upstream generators
- Resampling: Converts each path into a common frame and resamples to fixed resolution
- Evaluation: Applies configured metric plugins to compute cost vectors
- Aggregation: Combines metrics using weights and temporal decay
- Publication: Outputs scored trajectories and debug information
Trajectory Resampling
Every incoming trajectory is re-interpolated relative to the ego pose so that:
- First point aligns with current vehicle position
- Path comprises exactly
sample_num
points - Points are spaced at fixed temporal intervals
- All metrics operate on consistent trajectory representations
This ensures that metric plugins can assume identical temporal spacing even when generators produce paths of different lengths or densities.
Metric Evaluation
For each resampled path, the evaluator executes a plugin chain specified in the configuration. Each metric plugin:
- Computes a vector of values (one per trajectory point)
- Returns costs reflecting safety, comfort, or efficiency considerations
- Can be classified as either maximization or deviation metrics
Score Aggregation
The aggregation stage:
- Applies per-metric weights from configuration
- Multiplies by temporal decay weights (exponential decay for near-term bias)
- Normalizes across trajectory candidates
- Sums to produce a single scalar score per trajectory
Available Metrics
The package includes the following built-in metric plugins:
Metric | Type | Description | Class Name |
---|---|---|---|
TravelDistance | Maximization | Measures progress along trajectory | autoware::trajectory_ranker::metrics::TravelDistance |
LateralAcceleration | Deviation | Evaluates lateral acceleration for comfort | autoware::trajectory_ranker::metrics::LateralAcceleration |
LongitudinalJerk | Deviation | Measures longitudinal jerk for smoothness | autoware::trajectory_ranker::metrics::LongitudinalJerk |
TimeToCollision | Maximization | Calculates time to collision with objects | autoware::trajectory_ranker::metrics::TimeToCollision |
LateralDeviation | Deviation | Measures deviation from preferred lanes | autoware::trajectory_ranker::metrics::LateralDeviation |
SteeringConsistency | Deviation | Evaluates steering command consistency | autoware::trajectory_ranker::metrics::SteeringConsistency |
Metric Types
- Maximization: Higher values are better (e.g., distance traveled, time to collision)
- Deviation: Lower values are better (e.g., lateral acceleration, jerk)
Input / Output
Input Topics
Topic | Type | Description |
---|---|---|
~/input/trajectories |
autoware_internal_planning_msgs/msg/CandidateTrajectories |
Candidate trajectories to evaluate |
~/input/objects |
autoware_perception_msgs/msg/PredictedObjects |
Predicted objects for collision checking |
~/input/odometry |
nav_msgs/msg/Odometry |
Current vehicle state |
~/input/map |
autoware_map_msgs/msg/LaneletMapBin |
Lanelet2 HD map |
~/input/route |
autoware_planning_msgs/msg/LaneletRoute |
Current route |
Output Topics
Topic | Type | Description |
---|---|---|
~/output/trajectories |
autoware_internal_planning_msgs/msg/ScoredCandidateTrajectories |
Scored candidate trajectories |
~/debug/processing_time_detail |
autoware_utils_debug/msg/ProcessingTimeDetail |
Processing time statistics |
Parameters
Core Parameters
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Launch files
- launch/trajectory_ranker.launch.xml
-
- trajectory_ranker_param_path [default: $(find-pkg-share autoware_trajectory_ranker)/config/evaluation.param.yaml]
- input_trajectories [default: ~/input/trajectories]
- output_trajectories [default: ~/output/trajectories]
- input_route [default: ~/input/route]
- input_vector_map [default: ~/input/vector_map]
- input_odometry [default: ~/input/odometry]
- input_objects [default: ~/input/objects]
Messages
Services
Plugins
Recent questions tagged autoware_trajectory_ranker at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.1.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-09-26 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Daniel Sanchez
- Yukihiro Saito
- Go Sakayori
- Shintaro Sakoda
Authors
- Go Sakayori
autoware_trajectory_ranker
Purpose
The autoware_trajectory_ranker
package provides a flexible and extensible framework for evaluating and ranking multiple trajectory candidates in autonomous driving scenarios. It transforms a set of viable candidate paths into an ordered list by attaching a scalar score to every trajectory based on safety, comfort, and efficiency criteria.
This decoupling of upstream path-generation logic from downstream motion-control logic enables:
- Diverse trajectory generators (rule-based, ML-based, optimization-based) to coexist
- Controllers to simply follow the highest-ranked path
- Improved overall driving performance through multi-criteria optimization
- Architectural flexibility through a plugin-based metric system
Features
- Plugin-based Architecture: Dynamically load and configure evaluation metrics via pluginlib
- Multi-criteria Evaluation: Score trajectories based on multiple metrics simultaneously
- Time-based Weighting: Apply temporal decay to metrics for better near-term decision making
- Extensible Framework: Easy to add new metrics through the plugin system
- Real-time Processing: Efficient evaluation of multiple trajectories per planning cycle
Algorithm Overview
At every planning period the node latches the most recent odometry and perception context, then processes trajectories through five distinct stages:
- Ingestion: Receives candidate trajectories from upstream generators
- Resampling: Converts each path into a common frame and resamples to fixed resolution
- Evaluation: Applies configured metric plugins to compute cost vectors
- Aggregation: Combines metrics using weights and temporal decay
- Publication: Outputs scored trajectories and debug information
Trajectory Resampling
Every incoming trajectory is re-interpolated relative to the ego pose so that:
- First point aligns with current vehicle position
- Path comprises exactly
sample_num
points - Points are spaced at fixed temporal intervals
- All metrics operate on consistent trajectory representations
This ensures that metric plugins can assume identical temporal spacing even when generators produce paths of different lengths or densities.
Metric Evaluation
For each resampled path, the evaluator executes a plugin chain specified in the configuration. Each metric plugin:
- Computes a vector of values (one per trajectory point)
- Returns costs reflecting safety, comfort, or efficiency considerations
- Can be classified as either maximization or deviation metrics
Score Aggregation
The aggregation stage:
- Applies per-metric weights from configuration
- Multiplies by temporal decay weights (exponential decay for near-term bias)
- Normalizes across trajectory candidates
- Sums to produce a single scalar score per trajectory
Available Metrics
The package includes the following built-in metric plugins:
Metric | Type | Description | Class Name |
---|---|---|---|
TravelDistance | Maximization | Measures progress along trajectory | autoware::trajectory_ranker::metrics::TravelDistance |
LateralAcceleration | Deviation | Evaluates lateral acceleration for comfort | autoware::trajectory_ranker::metrics::LateralAcceleration |
LongitudinalJerk | Deviation | Measures longitudinal jerk for smoothness | autoware::trajectory_ranker::metrics::LongitudinalJerk |
TimeToCollision | Maximization | Calculates time to collision with objects | autoware::trajectory_ranker::metrics::TimeToCollision |
LateralDeviation | Deviation | Measures deviation from preferred lanes | autoware::trajectory_ranker::metrics::LateralDeviation |
SteeringConsistency | Deviation | Evaluates steering command consistency | autoware::trajectory_ranker::metrics::SteeringConsistency |
Metric Types
- Maximization: Higher values are better (e.g., distance traveled, time to collision)
- Deviation: Lower values are better (e.g., lateral acceleration, jerk)
Input / Output
Input Topics
Topic | Type | Description |
---|---|---|
~/input/trajectories |
autoware_internal_planning_msgs/msg/CandidateTrajectories |
Candidate trajectories to evaluate |
~/input/objects |
autoware_perception_msgs/msg/PredictedObjects |
Predicted objects for collision checking |
~/input/odometry |
nav_msgs/msg/Odometry |
Current vehicle state |
~/input/map |
autoware_map_msgs/msg/LaneletMapBin |
Lanelet2 HD map |
~/input/route |
autoware_planning_msgs/msg/LaneletRoute |
Current route |
Output Topics
Topic | Type | Description |
---|---|---|
~/output/trajectories |
autoware_internal_planning_msgs/msg/ScoredCandidateTrajectories |
Scored candidate trajectories |
~/debug/processing_time_detail |
autoware_utils_debug/msg/ProcessingTimeDetail |
Processing time statistics |
Parameters
Core Parameters
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Launch files
- launch/trajectory_ranker.launch.xml
-
- trajectory_ranker_param_path [default: $(find-pkg-share autoware_trajectory_ranker)/config/evaluation.param.yaml]
- input_trajectories [default: ~/input/trajectories]
- output_trajectories [default: ~/output/trajectories]
- input_route [default: ~/input/route]
- input_vector_map [default: ~/input/vector_map]
- input_odometry [default: ~/input/odometry]
- input_objects [default: ~/input/objects]
Messages
Services
Plugins
Recent questions tagged autoware_trajectory_ranker at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.1.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-09-26 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Daniel Sanchez
- Yukihiro Saito
- Go Sakayori
- Shintaro Sakoda
Authors
- Go Sakayori
autoware_trajectory_ranker
Purpose
The autoware_trajectory_ranker
package provides a flexible and extensible framework for evaluating and ranking multiple trajectory candidates in autonomous driving scenarios. It transforms a set of viable candidate paths into an ordered list by attaching a scalar score to every trajectory based on safety, comfort, and efficiency criteria.
This decoupling of upstream path-generation logic from downstream motion-control logic enables:
- Diverse trajectory generators (rule-based, ML-based, optimization-based) to coexist
- Controllers to simply follow the highest-ranked path
- Improved overall driving performance through multi-criteria optimization
- Architectural flexibility through a plugin-based metric system
Features
- Plugin-based Architecture: Dynamically load and configure evaluation metrics via pluginlib
- Multi-criteria Evaluation: Score trajectories based on multiple metrics simultaneously
- Time-based Weighting: Apply temporal decay to metrics for better near-term decision making
- Extensible Framework: Easy to add new metrics through the plugin system
- Real-time Processing: Efficient evaluation of multiple trajectories per planning cycle
Algorithm Overview
At every planning period the node latches the most recent odometry and perception context, then processes trajectories through five distinct stages:
- Ingestion: Receives candidate trajectories from upstream generators
- Resampling: Converts each path into a common frame and resamples to fixed resolution
- Evaluation: Applies configured metric plugins to compute cost vectors
- Aggregation: Combines metrics using weights and temporal decay
- Publication: Outputs scored trajectories and debug information
Trajectory Resampling
Every incoming trajectory is re-interpolated relative to the ego pose so that:
- First point aligns with current vehicle position
- Path comprises exactly
sample_num
points - Points are spaced at fixed temporal intervals
- All metrics operate on consistent trajectory representations
This ensures that metric plugins can assume identical temporal spacing even when generators produce paths of different lengths or densities.
Metric Evaluation
For each resampled path, the evaluator executes a plugin chain specified in the configuration. Each metric plugin:
- Computes a vector of values (one per trajectory point)
- Returns costs reflecting safety, comfort, or efficiency considerations
- Can be classified as either maximization or deviation metrics
Score Aggregation
The aggregation stage:
- Applies per-metric weights from configuration
- Multiplies by temporal decay weights (exponential decay for near-term bias)
- Normalizes across trajectory candidates
- Sums to produce a single scalar score per trajectory
Available Metrics
The package includes the following built-in metric plugins:
Metric | Type | Description | Class Name |
---|---|---|---|
TravelDistance | Maximization | Measures progress along trajectory | autoware::trajectory_ranker::metrics::TravelDistance |
LateralAcceleration | Deviation | Evaluates lateral acceleration for comfort | autoware::trajectory_ranker::metrics::LateralAcceleration |
LongitudinalJerk | Deviation | Measures longitudinal jerk for smoothness | autoware::trajectory_ranker::metrics::LongitudinalJerk |
TimeToCollision | Maximization | Calculates time to collision with objects | autoware::trajectory_ranker::metrics::TimeToCollision |
LateralDeviation | Deviation | Measures deviation from preferred lanes | autoware::trajectory_ranker::metrics::LateralDeviation |
SteeringConsistency | Deviation | Evaluates steering command consistency | autoware::trajectory_ranker::metrics::SteeringConsistency |
Metric Types
- Maximization: Higher values are better (e.g., distance traveled, time to collision)
- Deviation: Lower values are better (e.g., lateral acceleration, jerk)
Input / Output
Input Topics
Topic | Type | Description |
---|---|---|
~/input/trajectories |
autoware_internal_planning_msgs/msg/CandidateTrajectories |
Candidate trajectories to evaluate |
~/input/objects |
autoware_perception_msgs/msg/PredictedObjects |
Predicted objects for collision checking |
~/input/odometry |
nav_msgs/msg/Odometry |
Current vehicle state |
~/input/map |
autoware_map_msgs/msg/LaneletMapBin |
Lanelet2 HD map |
~/input/route |
autoware_planning_msgs/msg/LaneletRoute |
Current route |
Output Topics
Topic | Type | Description |
---|---|---|
~/output/trajectories |
autoware_internal_planning_msgs/msg/ScoredCandidateTrajectories |
Scored candidate trajectories |
~/debug/processing_time_detail |
autoware_utils_debug/msg/ProcessingTimeDetail |
Processing time statistics |
Parameters
Core Parameters
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Launch files
- launch/trajectory_ranker.launch.xml
-
- trajectory_ranker_param_path [default: $(find-pkg-share autoware_trajectory_ranker)/config/evaluation.param.yaml]
- input_trajectories [default: ~/input/trajectories]
- output_trajectories [default: ~/output/trajectories]
- input_route [default: ~/input/route]
- input_vector_map [default: ~/input/vector_map]
- input_odometry [default: ~/input/odometry]
- input_objects [default: ~/input/objects]
Messages
Services
Plugins
Recent questions tagged autoware_trajectory_ranker at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.1.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-09-26 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Daniel Sanchez
- Yukihiro Saito
- Go Sakayori
- Shintaro Sakoda
Authors
- Go Sakayori
autoware_trajectory_ranker
Purpose
The autoware_trajectory_ranker
package provides a flexible and extensible framework for evaluating and ranking multiple trajectory candidates in autonomous driving scenarios. It transforms a set of viable candidate paths into an ordered list by attaching a scalar score to every trajectory based on safety, comfort, and efficiency criteria.
This decoupling of upstream path-generation logic from downstream motion-control logic enables:
- Diverse trajectory generators (rule-based, ML-based, optimization-based) to coexist
- Controllers to simply follow the highest-ranked path
- Improved overall driving performance through multi-criteria optimization
- Architectural flexibility through a plugin-based metric system
Features
- Plugin-based Architecture: Dynamically load and configure evaluation metrics via pluginlib
- Multi-criteria Evaluation: Score trajectories based on multiple metrics simultaneously
- Time-based Weighting: Apply temporal decay to metrics for better near-term decision making
- Extensible Framework: Easy to add new metrics through the plugin system
- Real-time Processing: Efficient evaluation of multiple trajectories per planning cycle
Algorithm Overview
At every planning period the node latches the most recent odometry and perception context, then processes trajectories through five distinct stages:
- Ingestion: Receives candidate trajectories from upstream generators
- Resampling: Converts each path into a common frame and resamples to fixed resolution
- Evaluation: Applies configured metric plugins to compute cost vectors
- Aggregation: Combines metrics using weights and temporal decay
- Publication: Outputs scored trajectories and debug information
Trajectory Resampling
Every incoming trajectory is re-interpolated relative to the ego pose so that:
- First point aligns with current vehicle position
- Path comprises exactly
sample_num
points - Points are spaced at fixed temporal intervals
- All metrics operate on consistent trajectory representations
This ensures that metric plugins can assume identical temporal spacing even when generators produce paths of different lengths or densities.
Metric Evaluation
For each resampled path, the evaluator executes a plugin chain specified in the configuration. Each metric plugin:
- Computes a vector of values (one per trajectory point)
- Returns costs reflecting safety, comfort, or efficiency considerations
- Can be classified as either maximization or deviation metrics
Score Aggregation
The aggregation stage:
- Applies per-metric weights from configuration
- Multiplies by temporal decay weights (exponential decay for near-term bias)
- Normalizes across trajectory candidates
- Sums to produce a single scalar score per trajectory
Available Metrics
The package includes the following built-in metric plugins:
Metric | Type | Description | Class Name |
---|---|---|---|
TravelDistance | Maximization | Measures progress along trajectory | autoware::trajectory_ranker::metrics::TravelDistance |
LateralAcceleration | Deviation | Evaluates lateral acceleration for comfort | autoware::trajectory_ranker::metrics::LateralAcceleration |
LongitudinalJerk | Deviation | Measures longitudinal jerk for smoothness | autoware::trajectory_ranker::metrics::LongitudinalJerk |
TimeToCollision | Maximization | Calculates time to collision with objects | autoware::trajectory_ranker::metrics::TimeToCollision |
LateralDeviation | Deviation | Measures deviation from preferred lanes | autoware::trajectory_ranker::metrics::LateralDeviation |
SteeringConsistency | Deviation | Evaluates steering command consistency | autoware::trajectory_ranker::metrics::SteeringConsistency |
Metric Types
- Maximization: Higher values are better (e.g., distance traveled, time to collision)
- Deviation: Lower values are better (e.g., lateral acceleration, jerk)
Input / Output
Input Topics
Topic | Type | Description |
---|---|---|
~/input/trajectories |
autoware_internal_planning_msgs/msg/CandidateTrajectories |
Candidate trajectories to evaluate |
~/input/objects |
autoware_perception_msgs/msg/PredictedObjects |
Predicted objects for collision checking |
~/input/odometry |
nav_msgs/msg/Odometry |
Current vehicle state |
~/input/map |
autoware_map_msgs/msg/LaneletMapBin |
Lanelet2 HD map |
~/input/route |
autoware_planning_msgs/msg/LaneletRoute |
Current route |
Output Topics
Topic | Type | Description |
---|---|---|
~/output/trajectories |
autoware_internal_planning_msgs/msg/ScoredCandidateTrajectories |
Scored candidate trajectories |
~/debug/processing_time_detail |
autoware_utils_debug/msg/ProcessingTimeDetail |
Processing time statistics |
Parameters
Core Parameters
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Launch files
- launch/trajectory_ranker.launch.xml
-
- trajectory_ranker_param_path [default: $(find-pkg-share autoware_trajectory_ranker)/config/evaluation.param.yaml]
- input_trajectories [default: ~/input/trajectories]
- output_trajectories [default: ~/output/trajectories]
- input_route [default: ~/input/route]
- input_vector_map [default: ~/input/vector_map]
- input_odometry [default: ~/input/odometry]
- input_objects [default: ~/input/objects]
Messages
Services
Plugins
Recent questions tagged autoware_trajectory_ranker at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.1.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-09-26 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Daniel Sanchez
- Yukihiro Saito
- Go Sakayori
- Shintaro Sakoda
Authors
- Go Sakayori
autoware_trajectory_ranker
Purpose
The autoware_trajectory_ranker
package provides a flexible and extensible framework for evaluating and ranking multiple trajectory candidates in autonomous driving scenarios. It transforms a set of viable candidate paths into an ordered list by attaching a scalar score to every trajectory based on safety, comfort, and efficiency criteria.
This decoupling of upstream path-generation logic from downstream motion-control logic enables:
- Diverse trajectory generators (rule-based, ML-based, optimization-based) to coexist
- Controllers to simply follow the highest-ranked path
- Improved overall driving performance through multi-criteria optimization
- Architectural flexibility through a plugin-based metric system
Features
- Plugin-based Architecture: Dynamically load and configure evaluation metrics via pluginlib
- Multi-criteria Evaluation: Score trajectories based on multiple metrics simultaneously
- Time-based Weighting: Apply temporal decay to metrics for better near-term decision making
- Extensible Framework: Easy to add new metrics through the plugin system
- Real-time Processing: Efficient evaluation of multiple trajectories per planning cycle
Algorithm Overview
At every planning period the node latches the most recent odometry and perception context, then processes trajectories through five distinct stages:
- Ingestion: Receives candidate trajectories from upstream generators
- Resampling: Converts each path into a common frame and resamples to fixed resolution
- Evaluation: Applies configured metric plugins to compute cost vectors
- Aggregation: Combines metrics using weights and temporal decay
- Publication: Outputs scored trajectories and debug information
Trajectory Resampling
Every incoming trajectory is re-interpolated relative to the ego pose so that:
- First point aligns with current vehicle position
- Path comprises exactly
sample_num
points - Points are spaced at fixed temporal intervals
- All metrics operate on consistent trajectory representations
This ensures that metric plugins can assume identical temporal spacing even when generators produce paths of different lengths or densities.
Metric Evaluation
For each resampled path, the evaluator executes a plugin chain specified in the configuration. Each metric plugin:
- Computes a vector of values (one per trajectory point)
- Returns costs reflecting safety, comfort, or efficiency considerations
- Can be classified as either maximization or deviation metrics
Score Aggregation
The aggregation stage:
- Applies per-metric weights from configuration
- Multiplies by temporal decay weights (exponential decay for near-term bias)
- Normalizes across trajectory candidates
- Sums to produce a single scalar score per trajectory
Available Metrics
The package includes the following built-in metric plugins:
Metric | Type | Description | Class Name |
---|---|---|---|
TravelDistance | Maximization | Measures progress along trajectory | autoware::trajectory_ranker::metrics::TravelDistance |
LateralAcceleration | Deviation | Evaluates lateral acceleration for comfort | autoware::trajectory_ranker::metrics::LateralAcceleration |
LongitudinalJerk | Deviation | Measures longitudinal jerk for smoothness | autoware::trajectory_ranker::metrics::LongitudinalJerk |
TimeToCollision | Maximization | Calculates time to collision with objects | autoware::trajectory_ranker::metrics::TimeToCollision |
LateralDeviation | Deviation | Measures deviation from preferred lanes | autoware::trajectory_ranker::metrics::LateralDeviation |
SteeringConsistency | Deviation | Evaluates steering command consistency | autoware::trajectory_ranker::metrics::SteeringConsistency |
Metric Types
- Maximization: Higher values are better (e.g., distance traveled, time to collision)
- Deviation: Lower values are better (e.g., lateral acceleration, jerk)
Input / Output
Input Topics
Topic | Type | Description |
---|---|---|
~/input/trajectories |
autoware_internal_planning_msgs/msg/CandidateTrajectories |
Candidate trajectories to evaluate |
~/input/objects |
autoware_perception_msgs/msg/PredictedObjects |
Predicted objects for collision checking |
~/input/odometry |
nav_msgs/msg/Odometry |
Current vehicle state |
~/input/map |
autoware_map_msgs/msg/LaneletMapBin |
Lanelet2 HD map |
~/input/route |
autoware_planning_msgs/msg/LaneletRoute |
Current route |
Output Topics
Topic | Type | Description |
---|---|---|
~/output/trajectories |
autoware_internal_planning_msgs/msg/ScoredCandidateTrajectories |
Scored candidate trajectories |
~/debug/processing_time_detail |
autoware_utils_debug/msg/ProcessingTimeDetail |
Processing time statistics |
Parameters
Core Parameters
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Launch files
- launch/trajectory_ranker.launch.xml
-
- trajectory_ranker_param_path [default: $(find-pkg-share autoware_trajectory_ranker)/config/evaluation.param.yaml]
- input_trajectories [default: ~/input/trajectories]
- output_trajectories [default: ~/output/trajectories]
- input_route [default: ~/input/route]
- input_vector_map [default: ~/input/vector_map]
- input_odometry [default: ~/input/odometry]
- input_objects [default: ~/input/objects]
Messages
Services
Plugins
Recent questions tagged autoware_trajectory_ranker at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.1.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-09-26 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Daniel Sanchez
- Yukihiro Saito
- Go Sakayori
- Shintaro Sakoda
Authors
- Go Sakayori
autoware_trajectory_ranker
Purpose
The autoware_trajectory_ranker
package provides a flexible and extensible framework for evaluating and ranking multiple trajectory candidates in autonomous driving scenarios. It transforms a set of viable candidate paths into an ordered list by attaching a scalar score to every trajectory based on safety, comfort, and efficiency criteria.
This decoupling of upstream path-generation logic from downstream motion-control logic enables:
- Diverse trajectory generators (rule-based, ML-based, optimization-based) to coexist
- Controllers to simply follow the highest-ranked path
- Improved overall driving performance through multi-criteria optimization
- Architectural flexibility through a plugin-based metric system
Features
- Plugin-based Architecture: Dynamically load and configure evaluation metrics via pluginlib
- Multi-criteria Evaluation: Score trajectories based on multiple metrics simultaneously
- Time-based Weighting: Apply temporal decay to metrics for better near-term decision making
- Extensible Framework: Easy to add new metrics through the plugin system
- Real-time Processing: Efficient evaluation of multiple trajectories per planning cycle
Algorithm Overview
At every planning period the node latches the most recent odometry and perception context, then processes trajectories through five distinct stages:
- Ingestion: Receives candidate trajectories from upstream generators
- Resampling: Converts each path into a common frame and resamples to fixed resolution
- Evaluation: Applies configured metric plugins to compute cost vectors
- Aggregation: Combines metrics using weights and temporal decay
- Publication: Outputs scored trajectories and debug information
Trajectory Resampling
Every incoming trajectory is re-interpolated relative to the ego pose so that:
- First point aligns with current vehicle position
- Path comprises exactly
sample_num
points - Points are spaced at fixed temporal intervals
- All metrics operate on consistent trajectory representations
This ensures that metric plugins can assume identical temporal spacing even when generators produce paths of different lengths or densities.
Metric Evaluation
For each resampled path, the evaluator executes a plugin chain specified in the configuration. Each metric plugin:
- Computes a vector of values (one per trajectory point)
- Returns costs reflecting safety, comfort, or efficiency considerations
- Can be classified as either maximization or deviation metrics
Score Aggregation
The aggregation stage:
- Applies per-metric weights from configuration
- Multiplies by temporal decay weights (exponential decay for near-term bias)
- Normalizes across trajectory candidates
- Sums to produce a single scalar score per trajectory
Available Metrics
The package includes the following built-in metric plugins:
Metric | Type | Description | Class Name |
---|---|---|---|
TravelDistance | Maximization | Measures progress along trajectory | autoware::trajectory_ranker::metrics::TravelDistance |
LateralAcceleration | Deviation | Evaluates lateral acceleration for comfort | autoware::trajectory_ranker::metrics::LateralAcceleration |
LongitudinalJerk | Deviation | Measures longitudinal jerk for smoothness | autoware::trajectory_ranker::metrics::LongitudinalJerk |
TimeToCollision | Maximization | Calculates time to collision with objects | autoware::trajectory_ranker::metrics::TimeToCollision |
LateralDeviation | Deviation | Measures deviation from preferred lanes | autoware::trajectory_ranker::metrics::LateralDeviation |
SteeringConsistency | Deviation | Evaluates steering command consistency | autoware::trajectory_ranker::metrics::SteeringConsistency |
Metric Types
- Maximization: Higher values are better (e.g., distance traveled, time to collision)
- Deviation: Lower values are better (e.g., lateral acceleration, jerk)
Input / Output
Input Topics
Topic | Type | Description |
---|---|---|
~/input/trajectories |
autoware_internal_planning_msgs/msg/CandidateTrajectories |
Candidate trajectories to evaluate |
~/input/objects |
autoware_perception_msgs/msg/PredictedObjects |
Predicted objects for collision checking |
~/input/odometry |
nav_msgs/msg/Odometry |
Current vehicle state |
~/input/map |
autoware_map_msgs/msg/LaneletMapBin |
Lanelet2 HD map |
~/input/route |
autoware_planning_msgs/msg/LaneletRoute |
Current route |
Output Topics
Topic | Type | Description |
---|---|---|
~/output/trajectories |
autoware_internal_planning_msgs/msg/ScoredCandidateTrajectories |
Scored candidate trajectories |
~/debug/processing_time_detail |
autoware_utils_debug/msg/ProcessingTimeDetail |
Processing time statistics |
Parameters
Core Parameters
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Launch files
- launch/trajectory_ranker.launch.xml
-
- trajectory_ranker_param_path [default: $(find-pkg-share autoware_trajectory_ranker)/config/evaluation.param.yaml]
- input_trajectories [default: ~/input/trajectories]
- output_trajectories [default: ~/output/trajectories]
- input_route [default: ~/input/route]
- input_vector_map [default: ~/input/vector_map]
- input_odometry [default: ~/input/odometry]
- input_objects [default: ~/input/objects]
Messages
Services
Plugins
Recent questions tagged autoware_trajectory_ranker at Robotics Stack Exchange
Package Summary
Tags | No category tags. |
Version | 0.1.0 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Description | |
Checkout URI | https://github.com/autowarefoundation/autoware_universe.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-09-26 |
Dev Status | UNKNOWN |
Released | UNRELEASED |
Tags | planner ros calibration self-driving-car autonomous-driving autonomous-vehicles ros2 3d-map autoware |
Contributing |
Help Wanted (-)
Good First Issues (-) Pull Requests to Review (-) |
Package Description
Additional Links
Maintainers
- Daniel Sanchez
- Yukihiro Saito
- Go Sakayori
- Shintaro Sakoda
Authors
- Go Sakayori
autoware_trajectory_ranker
Purpose
The autoware_trajectory_ranker
package provides a flexible and extensible framework for evaluating and ranking multiple trajectory candidates in autonomous driving scenarios. It transforms a set of viable candidate paths into an ordered list by attaching a scalar score to every trajectory based on safety, comfort, and efficiency criteria.
This decoupling of upstream path-generation logic from downstream motion-control logic enables:
- Diverse trajectory generators (rule-based, ML-based, optimization-based) to coexist
- Controllers to simply follow the highest-ranked path
- Improved overall driving performance through multi-criteria optimization
- Architectural flexibility through a plugin-based metric system
Features
- Plugin-based Architecture: Dynamically load and configure evaluation metrics via pluginlib
- Multi-criteria Evaluation: Score trajectories based on multiple metrics simultaneously
- Time-based Weighting: Apply temporal decay to metrics for better near-term decision making
- Extensible Framework: Easy to add new metrics through the plugin system
- Real-time Processing: Efficient evaluation of multiple trajectories per planning cycle
Algorithm Overview
At every planning period the node latches the most recent odometry and perception context, then processes trajectories through five distinct stages:
- Ingestion: Receives candidate trajectories from upstream generators
- Resampling: Converts each path into a common frame and resamples to fixed resolution
- Evaluation: Applies configured metric plugins to compute cost vectors
- Aggregation: Combines metrics using weights and temporal decay
- Publication: Outputs scored trajectories and debug information
Trajectory Resampling
Every incoming trajectory is re-interpolated relative to the ego pose so that:
- First point aligns with current vehicle position
- Path comprises exactly
sample_num
points - Points are spaced at fixed temporal intervals
- All metrics operate on consistent trajectory representations
This ensures that metric plugins can assume identical temporal spacing even when generators produce paths of different lengths or densities.
Metric Evaluation
For each resampled path, the evaluator executes a plugin chain specified in the configuration. Each metric plugin:
- Computes a vector of values (one per trajectory point)
- Returns costs reflecting safety, comfort, or efficiency considerations
- Can be classified as either maximization or deviation metrics
Score Aggregation
The aggregation stage:
- Applies per-metric weights from configuration
- Multiplies by temporal decay weights (exponential decay for near-term bias)
- Normalizes across trajectory candidates
- Sums to produce a single scalar score per trajectory
Available Metrics
The package includes the following built-in metric plugins:
Metric | Type | Description | Class Name |
---|---|---|---|
TravelDistance | Maximization | Measures progress along trajectory | autoware::trajectory_ranker::metrics::TravelDistance |
LateralAcceleration | Deviation | Evaluates lateral acceleration for comfort | autoware::trajectory_ranker::metrics::LateralAcceleration |
LongitudinalJerk | Deviation | Measures longitudinal jerk for smoothness | autoware::trajectory_ranker::metrics::LongitudinalJerk |
TimeToCollision | Maximization | Calculates time to collision with objects | autoware::trajectory_ranker::metrics::TimeToCollision |
LateralDeviation | Deviation | Measures deviation from preferred lanes | autoware::trajectory_ranker::metrics::LateralDeviation |
SteeringConsistency | Deviation | Evaluates steering command consistency | autoware::trajectory_ranker::metrics::SteeringConsistency |
Metric Types
- Maximization: Higher values are better (e.g., distance traveled, time to collision)
- Deviation: Lower values are better (e.g., lateral acceleration, jerk)
Input / Output
Input Topics
Topic | Type | Description |
---|---|---|
~/input/trajectories |
autoware_internal_planning_msgs/msg/CandidateTrajectories |
Candidate trajectories to evaluate |
~/input/objects |
autoware_perception_msgs/msg/PredictedObjects |
Predicted objects for collision checking |
~/input/odometry |
nav_msgs/msg/Odometry |
Current vehicle state |
~/input/map |
autoware_map_msgs/msg/LaneletMapBin |
Lanelet2 HD map |
~/input/route |
autoware_planning_msgs/msg/LaneletRoute |
Current route |
Output Topics
Topic | Type | Description |
---|---|---|
~/output/trajectories |
autoware_internal_planning_msgs/msg/ScoredCandidateTrajectories |
Scored candidate trajectories |
~/debug/processing_time_detail |
autoware_utils_debug/msg/ProcessingTimeDetail |
Processing time statistics |
Parameters
Core Parameters
File truncated at 100 lines see the full file
Package Dependencies
System Dependencies
Dependant Packages
Launch files
- launch/trajectory_ranker.launch.xml
-
- trajectory_ranker_param_path [default: $(find-pkg-share autoware_trajectory_ranker)/config/evaluation.param.yaml]
- input_trajectories [default: ~/input/trajectories]
- output_trajectories [default: ~/output/trajectories]
- input_route [default: ~/input/route]
- input_vector_map [default: ~/input/vector_map]
- input_odometry [default: ~/input/odometry]
- input_objects [default: ~/input/objects]